tf.keras.constraints.RadialConstraint  |  TensorFlow v2.0.0 (original) (raw)

tf.keras.constraints.RadialConstraint

Stay organized with collections Save and categorize content based on your preferences.

Constrains Conv2D kernel weights to be the same for each radius.

Inherits From: Constraint

View aliases

Main aliases

tf.keras.constraints.radial_constraint

Compat aliases for migration

SeeMigration guide for more details.

tf.compat.v1.keras.constraints.RadialConstraint, tf.compat.v1.keras.constraints.radial_constraint

For example, the desired output for the following 4-by-4 kernel::

    kernel = [[v_00, v_01, v_02, v_03],
              [v_10, v_11, v_12, v_13],
              [v_20, v_21, v_22, v_23],
              [v_30, v_31, v_32, v_33]]

is this::

    kernel = [[v_11, v_11, v_11, v_11],
              [v_11, v_33, v_33, v_11],
              [v_11, v_33, v_33, v_11],
              [v_11, v_11, v_11, v_11]]

This constraint can be applied to any Conv2D layer version, includingConv2DTranspose and SeparableConv2D, and with either "channels_last" or"channels_first" data format. The method assumes the weight tensor is of shape (rows, cols, input_depth, output_depth).

Methods

get_config

View source

get_config()

__call__

View source

__call__(
    w
)

Call self as a function.