tf.keras.layers.ConvLSTM2D  |  TensorFlow v2.0.0 (original) (raw)

tf.keras.layers.ConvLSTM2D

Stay organized with collections Save and categorize content based on your preferences.

Convolutional LSTM.

View aliases

Compat aliases for migration

SeeMigration guide for more details.

tf.compat.v1.keras.layers.ConvLSTM2D

tf.keras.layers.ConvLSTM2D(
    filters, kernel_size, strides=(1, 1), padding='valid', data_format=None,
    dilation_rate=(1, 1), activation='tanh', recurrent_activation='hard_sigmoid',
    use_bias=True, kernel_initializer='glorot_uniform',
    recurrent_initializer='orthogonal', bias_initializer='zeros',
    unit_forget_bias=True, kernel_regularizer=None, recurrent_regularizer=None,
    bias_regularizer=None, activity_regularizer=None, kernel_constraint=None,
    recurrent_constraint=None, bias_constraint=None, return_sequences=False,
    go_backwards=False, stateful=False, dropout=0.0, recurrent_dropout=0.0, **kwargs
)

It is similar to an LSTM layer, but the input transformations and recurrent transformations are both convolutional.

Arguments
filters Integer, the dimensionality of the output space (i.e. the number of output filters in the convolution).
kernel_size An integer or tuple/list of n integers, specifying the dimensions of the convolution window.
strides An integer or tuple/list of n integers, specifying the strides of the convolution. Specifying any stride value != 1 is incompatible with specifying any dilation_rate value != 1.
padding One of "valid" or "same" (case-insensitive).
data_format A string, one of channels_last (default) or channels_first. The ordering of the dimensions in the inputs.channels_last corresponds to inputs with shape(batch, time, ..., channels)while channels_first corresponds to inputs with shape (batch, time, channels, ...). It defaults to the image_data_format value found in your Keras config file at ~/.keras/keras.json. If you never set it, then it will be "channels_last".
dilation_rate An integer or tuple/list of n integers, specifying the dilation rate to use for dilated convolution. Currently, specifying any dilation_rate value != 1 is incompatible with specifying any strides value != 1.
activation Activation function to use. By default hyperbolic tangent activation function is applied (tanh(x)).
recurrent_activation Activation function to use for the recurrent step.
use_bias Boolean, whether the layer uses a bias vector.
kernel_initializer Initializer for the kernel weights matrix, used for the linear transformation of the inputs.
recurrent_initializer Initializer for the recurrent_kernelweights matrix, used for the linear transformation of the recurrent state.
bias_initializer Initializer for the bias vector.
unit_forget_bias Boolean. If True, add 1 to the bias of the forget gate at initialization. Use in combination with bias_initializer="zeros". This is recommended in Jozefowicz et al.
kernel_regularizer Regularizer function applied to the kernel weights matrix.
recurrent_regularizer Regularizer function applied to the recurrent_kernel weights matrix.
bias_regularizer Regularizer function applied to the bias vector.
activity_regularizer Regularizer function applied to.
kernel_constraint Constraint function applied to the kernel weights matrix.
recurrent_constraint Constraint function applied to the recurrent_kernel weights matrix.
bias_constraint Constraint function applied to the bias vector.
return_sequences Boolean. Whether to return the last output in the output sequence, or the full sequence.
go_backwards Boolean (default False). If True, process the input sequence backwards.
stateful Boolean (default False). If True, the last state for each sample at index i in a batch will be used as initial state for the sample of index i in the following batch.
dropout Float between 0 and 1. Fraction of the units to drop for the linear transformation of the inputs.
recurrent_dropout Float between 0 and 1. Fraction of the units to drop for the linear transformation of the recurrent state.

Call arguments:

Input shape:

Output shape:

Raises
ValueError in case of invalid constructor arguments.

References:

| Attributes | | | ---------------------- | | | activation | | | bias_constraint | | | bias_initializer | | | bias_regularizer | | | data_format | | | dilation_rate | | | dropout | | | filters | | | kernel_constraint | | | kernel_initializer | | | kernel_regularizer | | | kernel_size | | | padding | | | recurrent_activation | | | recurrent_constraint | | | recurrent_dropout | | | recurrent_initializer | | | recurrent_regularizer | | | states | | | strides | | | unit_forget_bias | | | use_bias | |

Methods

get_initial_state

View source

get_initial_state(
    inputs
)

reset_states

View source

reset_states(
    states=None
)