tf.keras.metrics.Hinge  |  TensorFlow v2.0.0 (original) (raw)

tf.keras.metrics.Hinge

Stay organized with collections Save and categorize content based on your preferences.

Computes the hinge metric between y_true and y_pred.

View aliases

Main aliases

tf.metrics.Hinge

Compat aliases for migration

SeeMigration guide for more details.

tf.compat.v1.keras.metrics.Hinge

tf.keras.metrics.Hinge(
    name='hinge', dtype=None
)

y_true values are expected to be -1 or 1. If binary (0 or 1) labels are provided we will convert them to -1 or 1.

For example, if y_true is [-1., 1., 1.], and y_pred is [0.6, -0.7, -0.5] the hinge metric value is 1.6.

Usage:

m = tf.keras.metrics.Hinge()
m.update_state([-1., 1., 1.], [0.6, -0.7, -0.5])

# result = max(0, 1-y_true * y_pred) = [1.6 + 1.7 + 1.5] / 3

print('Final result: ', m.result().numpy())  # Final result: 1.6

Usage with tf.keras API:

model = tf.keras.Model(inputs, outputs)
model.compile('sgd', metrics=[tf.keras.metrics.Hinge()])
Args
fn The metric function to wrap, with signaturefn(y_true, y_pred, **kwargs).
name (Optional) string name of the metric instance.
dtype (Optional) data type of the metric result.
**kwargs The keyword arguments that are passed on to fn.

Methods

reset_states

View source

reset_states()

Resets all of the metric state variables.

This function is called between epochs/steps, when a metric is evaluated during training.

result

View source

result()

Computes and returns the metric value tensor.

Result computation is an idempotent operation that simply calculates the metric value using the state variables.

update_state

View source

update_state(
    y_true, y_pred, sample_weight=None
)

Accumulates metric statistics.

y_true and y_pred should have the same shape.

Args
y_true The ground truth values.
y_pred The predicted values.
sample_weight Optional weighting of each example. Defaults to 1. Can be a Tensor whose rank is either 0, or the same rank as y_true, and must be broadcastable to y_true.
Returns
Update op.