tf.keras.metrics.MeanTensor  |  TensorFlow v2.0.0 (original) (raw)

tf.keras.metrics.MeanTensor

Stay organized with collections Save and categorize content based on your preferences.

Computes the element-wise (weighted) mean of the given tensors.

Inherits From: Metric

View aliases

Main aliases

tf.metrics.MeanTensor

Compat aliases for migration

SeeMigration guide for more details.

tf.compat.v1.keras.metrics.MeanTensor

tf.keras.metrics.MeanTensor(
    name='mean_tensor', dtype=None
)

MeanTensor returns a tensor with the same shape of the input tensors. The mean value is updated by keeping local variables total and count. Thetotal tracks the sum of the weighted values, and count stores the sum of the weighted counts.

Usage:

m = tf.keras.metrics.MeanTensor()
m.update_state([0, 1, 2, 3])
m.update_state([4, 5, 6, 7])
print('Result: ', m.result().numpy())  # Result: [2, 3, 4, 5]
m.update_state([12, 10, 8, 6], sample_weights= [0, 0.2, 0.5, 1])
print('Result: ', m.result().numpy())  # Result: [2, 3.636, 4.8, 5.333]
Args
name (Optional) string name of the metric instance.
dtype (Optional) data type of the metric result.

| Attributes | | | ---------- | | | count | | | total | |

Methods

reset_states

View source

reset_states()

Resets all of the metric state variables.

This function is called between epochs/steps, when a metric is evaluated during training.

result

View source

result()

Computes and returns the metric value tensor.

Result computation is an idempotent operation that simply calculates the metric value using the state variables.

update_state

View source

update_state(
    values, sample_weight=None
)

Accumulates statistics for computing the element-wise mean.

Args
values Per-example value.
sample_weight Optional weighting of each example. Defaults to 1.
Returns
Update op.