法線ベクトルとは - わかりやすく解説 Weblio辞書 (original) (raw)

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: "法線ベクトル"ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2016年5月)

法線ベクトル(ほうせんベクトル、: normal vector)とは、2次元平面においては、曲線上の点における接線に垂直な平面ベクトル、3次元空間においては、曲面上の点における接平面に垂直な空間ベクトルのことである。法線(ほうせん、: normal)とは、接線や接平面に垂直直線のことである。

曲線(曲面)上の点に対して法線ベクトルは1つに決まらないことに注意する必要がある。そこで中でも単位ベクトルノルムが 1)であるものを単位法(線)ベクトル: normal unit vector)というが、それでも2つあることに注意する必要がある。

3次元での例

曲面の法線ベクトルは、2つの線形独立接ベクトル外積として求めることができる。

右図で示した右手系の正規直交座標系において、直方体の一つの面の頂点を A, B, C, D とすると、面 ABCD の法線ベクトル N は、

N = AB → × AD → {\displaystyle {\boldsymbol {N}}={\overrightarrow {\text{AB}}}\times {\overrightarrow {\text{AD}}}}