読み方:らんだむうおーくある点から出発し、任意の距離だけまっすぐに動くが、向きはまったくでたらめな運動を繰り返すこと。Weblio国語辞典では「Random Walk」の意味や使い方、用例、類似表現などを解説しています。">

「Random Walk」の意味や使い方 わかりやすく解説 Weblio辞書 (original) (raw)

読み方らんだむうぉーく
【英】:random walk

概要

\{X_n\}_{n=1}^\infty\,互いに独立同一分布にしたがう確率変数の列とするとき,

S_0=s~(定数), \qquad
 S_n=s + \sum_{i=1}^n X_i

によって定義されるマルコフ連鎖. すべての n\, に対して \mathrm{P}(X_n=d)=p\,, \mathrm{P}(X_n=-d)=q=1-p\, であるときを単純ランダムウォークといい, さらに p=q=1/2\, のとき, 単純ランダムウォークは対称であるという. 壁によって動き遮られたり, 動く範囲制限されるランダムウォークを考えることもできる.

詳説

ランダム・ウォーク (random walk) とその連続化であるブラウン運動は, でたらめな動き表現する最も基本的な確率過程で, 幅広い応用がある.

ランダム・ウォーク \{X_n\}_{n=1}^\infty\, 互いに独立同一分布に従う確率変数の列とするとき,

S_0=s~(定数),  \ \qquad S_n=s + \sum_{i=1}^n X_i (1)\,

によって定義される確率過程\{S_n\}_{n=0}^\infty\, をランダム・ウォークと呼ぶ. 特に, ある d>0\, およびすべての n\, に対して, \mathrm{P}(X_n=d)=p, \mathrm{P}(X_n=-d)=q=1-p\, であるとき, \{S_n\}_{n=0}^\infty\, は (1次元の) 単純ランダム・ウォークであるといい, さらに p=q=1/2\, のとき, 単純ランダム・ウォークは対称であるという. また, 「壁」によって動き止められたり, 動く範囲制限されるランダム・ウォークを考えることもできる. X_n\, 独立性より, ランダム・ウォークはマルコフ過程となる.

初期値s=0\, のランダム・ウォークにおいて, n\, ステップ後の位置期待値分散は, それぞれ \mathrm{E}(S_n)=n\,\mathrm{E}(X_1)\, , \mathrm{V}(S_n)=n\,\mathrm{V}(X_1)\, となり, 時間の経過比例する. 分散時間の経過比例することから, ランダム・ウォークは時間が経つにつれて次第拡散していくことが分かる.

d=1\, , 0<p<1\, として得られる単純ランダム・ウォーク \{S_n\}_{n=0}^\infty\, は, 整数状態空間とする周期2の既約マルコフ連鎖である. このマルコフ連鎖p\ne1/2\, のとき一時的であり, p=q=1/2\, ならば再帰的となる. たとえば p>1/2\, ならば S_n\, はだんだん大きくなっていく傾向があり, 正の方へドリフトする. このため出発点に戻ることは保証できなくなり一時的となるのである.

2次元対称な単純ランダム・ウォーク(2次元格子点空間上の4つ隣接点にそれぞれ確率1/4\, 推移する) は再帰的, 3次元上の単純ランダム・ウォークはすべて一時的であることも知られている [1].

単純ランダム・ウォークからブラウン運動 \{S_n\}_{n=0}^\infty\, 初期値s=0\, 対称な単純ランダム・ウォークとする. このランダム・ウォークが1ステップ進むのに T\, だけ時間がかかるとして, T\, d\, 同時に0に近づけることを考える. t=n\,T\, に対して, 時刻t\, にランダム・ウォークが x\, にいる確率v(x,t)\, と表すと, v(x,t)\, 差分方程式 v(x,t+T) = \{ v(x-d,t) + v(x+d,t) \}/2\, 満たすので,


 \frac{v(x,t+T) - v(x,t)}{T}
 = \frac{1}{2}\ \frac{d^2}{T}\ 
 \frac{v(x+d,t) - 2\,v(x,t) + v(x-d,t)}{d^2}

得られる. d^2/T=\sigma^2\, (定数) を保ったまま T\to0 (d\to0)\, とすれば


 \frac{\partial v(x,t)}{\partial t}
 = \frac{\sigma^2}{2}\ \frac{\partial^2 v(x,t)}{\partial x^2}
(2)\,

を得る. 式 (2)拡散方程式 (diffusion equation) と呼ばれ, その解は初期条件v(0,0)=1\, , v(x,0)=0 (x\ne0)\, のもとで, 正規分布 N(0,\sigma^2\,t)\, 密度関数となる. より一般的には, 初期値が0の (必ずしも対称でない) 単純ランダム・ウォークにおいて, d^2/T=\sigma^2\, , (p-q)/d=\mu/\sigma^2\, 保ったまま T\to0\, とすると, 時刻t\, での位置正規分布N(\mu\,t,\sigma^2\,t)\, に従う確率過程得られる [1].

ブラウン運動 イギリス植物学者ブラウン (R. Brown) は, 水面に浮く花粉中の微粒子極めて不規則な動きをすることを見いだした. アインシュタイン (A. Einstein) は, この運動拡散方程式 (2) によって特徴づけられることを示し, その後ウィナー (N. Wiener) らによって確率過程としての基盤築かれた. この確率過程ブラウン運動 (Brownian motion) またはウィーナー過程 (Wiener process) と呼ぶ.

(1次元の) ブラウン運動\{B(t)\}_{t\ge0}\, 次の性質満たす実数確率過程である:

1. 独立増分過程である.

2. 任意の s\, , t>0\, に対して B(s+t)-B(s)\, 正規分布N(0,\sigma^2\,t)\, に従う.

3. B(0)=0\, かつ B(t)\, t=0\, 連続.

1. より, 時刻 s\, 以降\{B(t)\}_{t\ge s}\, 振る舞いs\, までの履歴には依存しないため, ブラウン運動マルコフ過程である. さらに, ブラウン運動強マルコフ性を持つこと, 標本路が連続となることも知られている [2].

\sigma^2\, 拡散係数呼び, 特に \sigma^2=1\, ブラウン運動標準ブラウン運動と呼ぶ. また, B_d(t) = \mu\,t + B(t)\, によって定まる \{B_d(t)\}_{t\ge0}\, ドリフトを持つブラウン運動呼び, \mu\, ドリフト係数と呼ぶ.

鏡像原理 ドリフトのないブラウン運動 \{B(t)\}_{t\ge0}\, に対して \tau_a\, \{B(t)\}_{t\ge0}\, 初めa\, を横切る時刻とすると, \tau_a\, 停止時 (stopping time) となる. t\ge\tau_a\, において \{B(t)\}_{t\ge\tau_a}\, a\, に関して対称標本路を持つ確率過程\{\bar{B}(t)\}_{t\ge0}\,


 \bar{B}(t) = \left\{\begin{array}{ll}
 B(t), &\quad t<\tau_a, \\
 2\,a - B(t), &\quad t\ge\tau_a,
 \end{array}\right.

定める. \{B(t)\}_{t\ge0}\, 強マルコフ性を持つことと, \{B(t)\}\, \{\bar{B}(t)\}\, 対称性から, \{B(t)\}\, \{\bar{B}(t)\}\, は同じ確率法則に従うことがわかる. 一般にこのような性質鏡像原理 (reflection principle) と呼び, 初到達時間分布など求める際に利用される.

拡散過程 ドリフト係数拡散係数位置x\, 時刻t\, 依存した\mu(x,t)\, , \sigma^2(x,t)\, をとるように一般化し得られる確率過程\{D(t)\}_{t\ge0}\, 拡散過程 (diffusion process) と呼び, \mu(x,t)\, \sigma^2(x,t)\, を, それぞれドリフト関数, 拡散関数と呼ぶ. 拡散過程強マルコフ性持ち, その標本路は連続である. 逆に, 連続標本路を持つマルコフ過程拡散過程となることが知られている.

ブラウン運動拡散過程標本路は, 連続であるがいたるところ微分不可能という性質持っている. このため拡散過程解析においては, 確率積分確率微分方程式といった通常の微分積分とは異な概念が必要となる [3, 4].


参考文献

[1] W. Feller, An Introduction to Probability Theory and Its Applications, Volume 1, 2nd Ed., John Wiley & Sons, 1957. 河田龍夫監訳, 『確率論とその応用 I』, 紀伊国屋書店, 1960 (上巻), 1961 (下巻).

[2] K. Itô and H. P. McKean, Diffusion Processes and Their Sample Paths, Second Printing, Springer-Verlag, 1996.

[3] 木島正明, 『ファイナンス工学入門 第I部 ランダムウォークとブラウン運動』, 日科技連, 1994.

[4] 渡辺信三, 『確率微分方程式』, 産業図書, 1975.