「forcing」の意味や使い方 わかりやすく解説 Weblio辞書 (original) (raw)
| この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。出典検索?: "強制法" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2018年10月) |
|---|
数学の集合論における強制法(きょうせいほう、Forcing)とは、ポール・コーエンによって開発された無矛盾性や独立性を証明するための手法である。強制法が初めて使われたのは1962年、連続体仮説と選択公理のZFからの独立性を証明した時のことである。強制法は60年代に大きく再構成されシンプルになり、集合論や、再帰理論などの数理論理学の分野で、極めて強力な手法として使われてきた。
直観的意味合い
強制法はより概念的には自然で直観的であるブール値モデルの方法と等価であるが、そちらのほうは応用が利きにくい。
直観的には、強制法は集合論の宇宙 V をより大きい宇宙 V* に拡大することから成り立っている。 この大きい宇宙では、拡大する前の宇宙には無かった ω = {0,1,2,…} の新しい部分集合をたくさん要素に持っている。 そしてそれにより連続体仮説を否定することができる。が、このような議論は表面上不可能である。
原理的には、次のようなものを考える。
V ∗ = V × { 0 , 1 } , {\displaystyle V^{*}=V\times \{0,1\},\,}
この項目は、集合論に関連した書きかけの項目です。この項目を加筆・訂正などしてくださる協力者を求めています(プロジェクト:数学/Portal:数学)。