Kellems RE, et al. (1975) (original) (raw)

Reference: Kellems RE, et al. (1975)

Reference Help

Abstract


Growing yeast spheroplasts were shown to have, on the average, four times the number of cytoplasmic ribosomes in contact with the outer mitochondrial membrane compared to starved spheroplasts. Ribosomes in contact with mitochondria in the growing spheroplast preparation, like free cytoplasmic ribosomes, exist primarily as polysome structures. In the starved spheroplast preparation, both mitochondria-bound and free cytoplasmic ribosomes exist primarily as monosomes. Mitochondria isolated from growing spheroplasts in a medium containing lmM Mg++ have cytoplasmic ribosomes bound directly to the outer membrane. These ribosomes can be quantitatively removed by washing the mitochondria with 2 mM EDTA. Mitochondria from starved spheroplasts are capable of accepting either free cytoplasmic polysomes or cytoplasmic polysomes extracted from mitochondria. However, the extent of polysome binding to mitochondria was shown to be a direct function of the Mg++ concentration; a smaller percentage of the input polysomes bind as the Mg++ concentration is lowered. At 1 mM Mg++, neither free cytoplasmic nor mitochondria-bound polysomes bind to mitochondria. Nevertheless, when growing spheroplasts are broken and mitochondria isolated in medium containing 1 mM Mg++, the mitochondria are seen to have cytoplasmic ribosomes firmly attached to the outer membrane. This result, in addition to our earlier data (Kellems, R. E., and R. A. Butow. 1974. J. Biol. Chem. 249:3304-3310), support the view that cytoplasmic ribosomes attached to the outer membrane of purified mitochondria were attached in vivo. In preparations of mitochondria isolated from growing spheroplasts, ribosomes appear to be found to specific regions of the outer membrane, namely those regions which are in close association or in contact with the inner mitochondrial membrane. This is particularly evident with mitochondria in a condensed configuration. This finding suggests a mechanism whereby cytoplasmically synthesized mitochondrial protein could be transferred by a process of vectorial translation across both membranes of the organelle.

Reference Type

Journal Article | Research Support, U.S. Gov't, P.H.S.

Authors

Kellems RE, Allison VF, Butow RA

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference