Stelter P and Hurt E (2014) (original) (raw)
Reference: Stelter P and Hurt E (2014)
Abstract
The vast number of cellular proteins performs their roles within macromolecular assemblies and functional cell networks. Hence, an understanding of how multiprotein complexes are formed and modified during biogenesis is a key problem in cell biology. Here, we describe a detailed protocol for a nonradioactive pulse-chase in vivo-labeling approach. The method is based on the incorporation of an unnatural amino acid (O-methyl-tyrosine) by the nonsense suppression of an amber stop codon that quickly fuses an affinity tag of choice to a protein of interest. This affinity tag could be used to directly isolate the newly synthesized proteins and hence allows for the characterization of early complex biogenesis intermediates. Combined with a tetracycline controllable riboswitch in the 5'-UTR of the respective mRNA, this approach became a versatile tool to study dynamic protein assembly within cellular networks (Stelter et al., 2012). In the context of this volume, this method notably provides a suitable approach to study NPC, ribosome and mRNP biogenesis, or nuclear protein translocation. This chapter includes detailed protocols to track newly synthesized, epitope pulsed-chased proteins by western blot, their assembly within complexes using immunoprecipitation, and their subcellular localization using indirect immunofluorescence or subcellular fractionation. While these protocols use budding yeast as model system, this method can be adapted to other model systems.
PMID: 24857729
Download Citation (.nbib)
Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Gene Ontology Annotations
Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
Gene/Complex | Qualifier | Gene Ontology Term | Aspect | Annotation Extension | Evidence | Method | Source | Assigned On | Reference |
---|
- Download (.txt)
- Analyze
- Add Annotations to Child Terms
Phenotype Annotations
Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.
Gene | Phenotype | Experiment Type | Mutant Information | Strain Background | Chemical | Details | Reference |
---|
- Download (.txt)
- Analyze
- Add Annotations to Child Terms
Disease Annotations
Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
Gene | Disease Ontology Term | Qualifier | Evidence | Method | Source | Assigned On | Reference |
---|
- Download (.txt)
- Analyze
- Add Annotations to Child Terms
Regulation Annotations
Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.
Regulator | Target | Direction | Regulation Of | Happens During | Method | Evidence |
---|
- Download (.txt)
- Analyze
Post-translational Modifications
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
Site | Modification | Modifier | Reference |
---|
- Download (.txt)
- Analyze
Interaction Annotations
Genetic Interactions
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.
Interactor | Interactor | Allele | Assay | Annotation | Action | Phenotype | SGA score | P-value | Source | Reference |
---|
- Download (.txt)
- Analyze
Physical Interactions
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.
Interactor | Interactor | Assay | Annotation | Action | Modification | Source | Reference |
---|
- Download (.txt)
- Analyze
Functional Complementation Annotations
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
Gene | Species | Gene ID | Strain background | Direction | Details | Source | Reference |
---|
- Download (.txt)
- Analyze