Xu CW, et al. (1997) (original) (raw)
Reference: Xu CW, et al. (1997)
Abstract
Two-hybrid methods have augmented the classical genetic techniques biologists use to assign function to genes. Here, we describe construction of a two-bait interaction trap that uses yeast cells to register more complex protein relationships than those detected in existing two-hybrid systems. We show that such cells can identify bridge or connecting proteins and peptide aptamers that discriminate between closely related allelic variants. The protein relationships detected by these cells are analogous to classical genetic relationships, but lend themselves to systematic application to the products of entire genomes and combinatorial libraries. We show that, by performing logical operations on the phenotypic outputs of these complex cells and existing two-hybrid cells, we can make inferences about the topology and order of protein interactions. Finally, we show that cells that register such relationships can perform logical operations on protein inputs. Thus these cells will be useful for analysis of gene and allele function, and may also define a path for construction of biological computational devices.
PMID: 9356474
Download Citation (.nbib)
Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Gene Ontology Annotations
Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
Gene/Complex | Qualifier | Gene Ontology Term | Aspect | Annotation Extension | Evidence | Method | Source | Assigned On | Reference |
---|
- Download (.txt)
- Analyze
- Add Annotations to Child Terms
Phenotype Annotations
Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.
Gene | Phenotype | Experiment Type | Mutant Information | Strain Background | Chemical | Details | Reference |
---|
- Download (.txt)
- Analyze
- Add Annotations to Child Terms
Disease Annotations
Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
Gene | Disease Ontology Term | Qualifier | Evidence | Method | Source | Assigned On | Reference |
---|
- Download (.txt)
- Analyze
- Add Annotations to Child Terms
Regulation Annotations
Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.
Regulator | Target | Direction | Regulation Of | Happens During | Method | Evidence |
---|
- Download (.txt)
- Analyze
Post-translational Modifications
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
Site | Modification | Modifier | Reference |
---|
- Download (.txt)
- Analyze
Interaction Annotations
Genetic Interactions
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.
Interactor | Interactor | Allele | Assay | Annotation | Action | Phenotype | SGA score | P-value | Source | Reference |
---|
- Download (.txt)
- Analyze
Physical Interactions
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.
Interactor | Interactor | Assay | Annotation | Action | Modification | Source | Reference |
---|
- Download (.txt)
- Analyze
Functional Complementation Annotations
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
Gene | Species | Gene ID | Strain background | Direction | Details | Source | Reference |
---|
- Download (.txt)
- Analyze