Temitope Isaac Adelusi | Xuzhou Medical College (original) (raw)
Papers by Temitope Isaac Adelusi
In Silico Pharmacology, Dec 18, 2023
Social Science Research Network, 2022
PubMed, Nov 1, 2017
Objectives: Increasing evidence suggests that regular physical exercise improves type 2 diabetes ... more Objectives: Increasing evidence suggests that regular physical exercise improves type 2 diabetes mellitus (T2DM). However, the potential beneficial effects of swimming on insulin resistance and lipid disorder in T2DM, and its underlying mechanisms remain unclear. Materials and methods: Rats were fed with high fat diet and given a low dosage of Streptozotocin (STZ) to induce T2DM model, and subsequently treated with or without swimming exercise. An 8-week swimming program (30, 60 or 120 min per day, 5 days per week) decreased body weight, fasting blood glucose and fasting insulin. Results: Swimming ameliorated lipid disorder, improved muscular atrophy and revealed a reduced glycogen deposit in skeletal muscles of diabetic rats. Furthermore, swimming also inhibited the activation of Wnt3a/β-catenin signaling pathway, decreased Wnt3a mRNA and protein level, upregulated GSK3β phosphorylation activity and reduced the expression of β-catenin phosphorylation in diabetic rats. Conclusion: The trend of the result suggests that swimming exercise proved to be a potent ameliorator of insulin resistancein T2DM through the modulation of Wnt3a/β-catenin pathway and therefore, could present a promising therapeutic measure towards the treatment of diabetes and its relatives.
Mitochondrion, Mar 1, 2022
Several drug targets have been amenable to drug discovery pursuit not until the characterization ... more Several drug targets have been amenable to drug discovery pursuit not until the characterization of the mitochondrial permeability transition pore (MPTP), a pore with an undefined molecular identity that forms on the inner mitochondrial membrane upon mitochondrial permeability transition (MPT) under the influence of calcium overload and oxidative stress. The opening of the pore which is presumed to cause cell death in certain human diseases also has implications under physiological parlance. The mitochondrial community has witnessed many protein candidates such as; voltage-dependent anion channel (VDAC), adenine nucleotide translocase (ANT), Mitochondrial phosphate carrier (PiC), Spastic Paralegin (SPG7), disordered proteins, and F1Fo ATPase. Also, different models for this pore have been postulated in the last six decades since it was characterized but genetic studies have cast out most of these candidates with only F1Fo ATPase currently under intense argument. Cyclophilin D (CyPD) remains the widely accepted positive regulator of the MPTP known to date, but no drug candidate has emerged as its inhibitor, raising concern issues for therapeutics. Thus, in this review, we discuss various models of MPTP reported with the hope of stimulating further research in this field. We went beyond the classical description of the MPTP to ascribe a 'two-edged sword property' to the pore for therapeutic function in human disease because its inhibition and activation have pharmacological relevance. We identified putative proteins upstream to CyPD that can regulate its activity and prevent cell deaths in neurodegenerative disease and ischemia-reperfusion injury.
Acta Biochimica Polonica, Nov 22, 2013
The statin-induced effects on high density lipoprotein (HDL) are relatively small compared with t... more The statin-induced effects on high density lipoprotein (HDL) are relatively small compared with those of low density lipoprotein (LDL) and, as a result, most clinical trials of statins are underpowered with respect to HDL parameters. This study experimentally investigated, the effects of statin on serum lipids, atherogenic index and examined the possibility of a relationship amongst serum concentrations of HDL-C, atherogenic index and activity of lecithin:cholesterol acyl transferase. Method: Thirty albino rats equally divided into 2 groups were used for the study. Group 1 was given 0.05mg/g of statin daily for 28 days, while group 2 served as control. HDL concentration was determined as a measure of HDL-C. Total cholesterol (TC), triglyceride (TG) and HDL-C were determined spectrophotometrically while LDL-C was calculated using the Frieldwald formula. Effect on the activity of lecithin:cholesterol acyl transferase was determined by the difference between the amount of free cholesterol converted to cholesteryl ester in the two experimental groups. Effects on body and relative organs weights were also determined. Results: The administration of statin caused a significant increase in serum concentration of HDL-C, while levels of LDL-C, triglyceride and total cholesterol were reduced. Simvastatin caused a significant reduction in the atherogenic index (TC/HDL-C; LDLC/HDL-C). The administration of statin significantly induced the activity of lecithin:cholesterol acyl transferase (LCAT) as evident by reduced serum concentration of free cholesterol when compared with control. The administration of statin caused reduced body and relative organs weights. Conclusion: The study showed that serum antihyperlipidemic and antiatherogenic activity of statin may involve the induction of LCAT.
Scientific Reports, Nov 18, 2016
Repaglinide is an insulin secretagogue that often exhibits considerable interindividual variabili... more Repaglinide is an insulin secretagogue that often exhibits considerable interindividual variability in therapeutic efficacy. The current study was designed to investigate the impact of KCNQ1 genetic polymorphism on the efficacy of repaglinide and furthermore to identify the potential mechanism of action in patients with type 2 diabetes. A total of 305 patients and 200 healthy subjects were genotyped for the KCNQ1 rs2237892 polymorphism, and 82 patients with T2DM were randomized for the oral administration of repaglinide for 8 weeks. HepG2 cells were incubated with repaglinide in the absence or presence of a KCNQ1 inhibitor or the pcDNA3.1-hKCNQ1 plasmid, after which the levels of Akt, IRS-2 and PI(3)K were determined. Our data showed that repaglinide significantly decreased HOMA-IR in patients with T2DM. Furthermore, the level of HOMA-IR was significantly reduced in those patients with CT or TT genotypes than CC homozygotes. The KCNQ1 inhibitor enhanced repaglinide efficacy on insulin resistance, with IRS-2/PI(3)K/Akt signaling being up-regulated markedly. As in our clinical experiment, these data strongly suggest that KCNQ1 genetic polymorphism influences repaglinide response due to the pivotal role of KCNQ1 in regulating insulin resistance through the IRS-2/PI(3)K/Akt signaling pathway. This study was registered in the Chinese Clinical Trial Register on May 14, 2013. (No. ChiCTR-CCC13003536).
Journal of Neuroscience Research, Jun 13, 2017
Diabetic encephalopathy (DE), one of the most prevalent chronic complications of diabetes mellitu... more Diabetic encephalopathy (DE), one of the most prevalent chronic complications of diabetes mellitus, is short of effective prevention and formidable therapeutic strategies. The aim of the present study is to reveal the imbalance of tryptophan (Trp) and its metabolites in streptozotocin (STZ)-induced experimental DE rats to underscore their critical values in clinical diagnosis of the disease. For this purpose, we first developed an accurate and appropriate simultaneous method for measuring Trp and its metabolites using liquid chromatography-tandem mass spectrometry, which was in accordance with the requirements of biological sample analysis. Secondly, a single STZ intraperitoneal injection was administered to male Sprague-Dawley rats, and their cognitive function was detected by Morris water maze tests. Cerebrospinal fluid (CSF), serum, and brain tissue were then collected for the determination of Trp and its metabolites. Compared with age-matched control rats, the levels of neuroprotective serotonin decreased significantly in the samples of cortices, hippocampi, striatum, CSF, and serums in the STZ-induced DE rats, while the levels of neurotoxic 3-hydroxykynurenine increased significantly. Moreover, analogous changes of both compounds were found in the central nervous system and peripheral blood of the STZ-induced DE rats. In conclusion, we established a quantitative method for the simultaneous detection of Trp and its metabolites, and we also present a critical elucidation of the nervous system dysfunction in DE.
Pharmaceutical and biomedical research, Apr 16, 2022
Review Article Inhibitors of α-glucosidase and Angiotensin-converting Enzyme in the Treatment of ... more Review Article Inhibitors of α-glucosidase and Angiotensin-converting Enzyme in the Treatment of Type 2 Diabetes and its Complications: A Review on in Silico Approach Background: The use of pharmacological agents to synergistically target key enzymes associated with carbohydrate digestion (α-glucosidase) and the hypertension-related angiotensin-converting enzyme (ACE) are critical strategies for the management of type 2 diabetes (T2D) and its end-stage complications. Furthermore, aside from their blood pressure-lowering effect, ACE inhibitors (ACEIs) are important therapeutic agents for preventing diabetic complications, highlighting their synergistic renoprotective and antihypertensive effects in diabetic patients who are normotensive and hypertensive. Objectives: We reviewed the safety and potent activity of phytochemicals discovered based on molecular docking and dynamics in recent years that could be used to treat T2D. Methods: We surveyed recently in silico drug discovery findings on α-glucosidase and ACE retrieved from the PubMed database. Computational in silico ADMET meta-analysis was performed on 57 compounds that could potentially inhibit α-glucosidase or ACE. Results: The review highlighted the fact that most hit compounds of α-glucosidase and ACE involving the use of molecular docking and molecular dynamics techniques are competitive and peptide inhibitors, respectively. Moreover, we found that most authors do not consider absorption distribution metabolism excretion toxicity (ADMET) studies on drug candidates, which is important in determining the safety profile of potent leads. Hence, we performed in silico ADMET meta-analysis of the reported compounds and found some inhibitors with an excellent pharmacological profile. Conclusion: We propose that further studies be conducted on these promising leads to demonstrate their efficacy and safety in the treatment of T2D.
Informatics in Medicine Unlocked, 2022
European Journal of Pharmacology, 2021
The passage of time that evoke aging; the tilted redox balance that contribute oxidative entropy;... more The passage of time that evoke aging; the tilted redox balance that contribute oxidative entropy; the polarization of microglia cells that produce inflammatory phenotype; all represent the intricacies of CNS-dependent disease progression. Neurological diseases that result from CNS injury raise social concerns and the available therapeutic strategies are frustrated by low efficacy, high toxicity, and multiple side effects. However, emergent studies have shown the neuroprotective role of natural compounds - including chalcones - with high efficacy in the protection of CNS structures. These compounds reportedly demonstrate neurotrophic mechanism through the upregulation of neurotrophic factors, anti-apoptotic Bcl-2, and downregulation of Bax protein; anti-neuroinflammatory mechanism via the inhibition of neuroinflammatory pathways, attenuated secretion of pro-inflammatory cytokines, prevention of blood brain barrier (BBB) disruption, and protection against nerve senescence; antioxidant mechanism through the upregulation of Nrf2 activities, inhibition of Keap1, synthesis of antioxidant enzymes, and maintenance of high antioxidant/oxidant ratio. All these mechanisms represent chalcones' neuroprotective mechanisms. In this review, we highlight different pathways involved in CNS-related diseases and elucidate various mechanisms by which chalcones can perturb these shunts as a potential therapeutic modality.
Molecular and Cellular Endocrinology, Sep 1, 2017
Diabetic cataract (DC), an identified life-threatening secondary complication of diabetes mellitu... more Diabetic cataract (DC), an identified life-threatening secondary complication of diabetes mellitus, has proven to be a dilemma because of its multifactorial caused and progression. An increasing number of studies have shown that in addition to the maillard reaction, enhanced polyol pathway, and oxidative insults, epithelial mesenchymal transition (EMT) is related to the prevalence of DC. Quercetin, a classic flavonoid with multiple pharmacological effects has been reported to possess therapeutic efficacy in the management and treatment of this disease. However, the mechanism underlying its therapeutic efficacy in EMT of lens epithelial cells (SRA01/04) and contribution to resolving DC remains a mystery. Therefore, in this study, we investigated the effects of quercetin on EMT of SRA01/04 and high-glucose (HG)induced lens opacity accompanied by lens fibrosis induced by type-1 diabetes. Furthermore, we sought to clarify the specific mechanisms underlying these effects. At week 14 after streptozotocin (STZ) intraperitoneal administration, diabetic rats showed lens opacity accompanied with diminished antioxidant function, enhanced polyol pathway activity, and non-enzymatic glycation. Western blotting confirmed EMT in rat SRA01/04 cells with significantly increased a-smooth muscle actin (a-SMA) and decreased E-cadherin expressions. Treatment of the lens with quercetin ameliorated the oxidative stress, inhibited aldose reductase (AR) activation, reduced advanced glycation end product (AGE) production, and finally suppressed EMT in the early stages. Our in vitro results showed that high-glucose activated the transforming growth factor-b2/phosphoinositide 3-kinase/protein kinase B (TGF-b2/PI3K/Akt) signalling and EMT in SRA01/04 cells. Further, induced oxidative stress, activation of aldose reductase, and accumulation of advanced glycation end products were also involved in this process. Quercetin was potent enough to effectively ameliorate the high glucose (HG)-induced EMT of SRA01/04 cells by inhibiting the activation of TGF-b2/PI3K/Akt, enhancing the antioxidant capacity, inhibiting AR activity, and reducing AGE production. From the whole animal to tissues, and finally the cellular level, our results provide considerable evidence of the therapeutic potential of quercetin for DC. This might be due to its inhibition of EMT mediated through inhibition of the TGF-b/PI3K/Akt pathway.
Biomedicine & Pharmacotherapy, Mar 1, 2020
Hyperglycemia/oxidative stress has been implicated in the initiation and progression of diabetic ... more Hyperglycemia/oxidative stress has been implicated in the initiation and progression of diabetic complications while the components of Keap1/Nrf2/ARE signaling are being exploited as therapeutic targets for the treatment/management of these pathologies. Antioxidant agents like drugs, nutraceuticals and pure compounds that target the proteins of this pathway and their downstream genes hold the therapeutic strength to put the progression of this disease at bay. Here, we elucidate how the modulation of Keap1/Nrf2/ARE had been exploited for the treatment/management of end-stage diabetic kidney complication (diabetic nephropathy) by looking into (1) Nrf2 nuclear translocation and phosphorylation by some protein kinases at specific amino acid sequences and (2) Keap1 downregulation/Keap1-Nrf2 protein-protein inhibition (PPI) as potential therapeutic mechanisms exploited by Nrf2 activators for the modulation of diabetic nephropathy biomarkers (Collagen IV, Laminin, TGF-β1 and Fibronectin) that ultimately lead to the amelioration of this disease progression. Furthermore, we brought to limelight the relationship between diabetic nephropathy and Keap1/Nrf2/ARE and finally elucidate how the modulation of this signaling pathway could be further explored to create novel therapeutic milestones.
Tropical Journal of Natural Product Research, Jun 7, 2018
Oxidative stress stems from the decrease in natural cell antioxidant capacity or an increase amou... more Oxidative stress stems from the decrease in natural cell antioxidant capacity or an increase amount of reactive oxygen species (ROS) in organisms. 1 Free radicals have been implicated in cell degeneration through oxidation of bio-molecules like DNA, membrane lipids and proteins. This oxidation can induce various pathologies which include atherogenesis, carcinogenesis, Parkinson's disease and ageing. 2 Health disorders like arthritis, cancer, diabetes mellitus, gastric ulcers, hypertension, inflammatory diseases and neurodegenerative diseases have been emphasized by scientists to emanate from unchecked activities of ROS. 3,4 However, functional foods and nutraceutical scientists emphasize the consumption of foods naturally blessed with antioxidant phytochemicals as a remedy, due to their ability to ameliorate degenerative diseases by improving the body's antioxidant status. Natural foods have been reported to possess phytochemicals and health improving biochemicals. Antioxidants chelates heavy metal ions, reduces singlet oxygen, nitrates and other free radicals, and suppress the
Critical Reviews in Oncology Hematology, Apr 1, 2023
Functional Foods in Health and Disease, Nov 5, 2021
The invasiveness and low survivability on the part of patients associated with cancer continues t... more The invasiveness and low survivability on the part of patients associated with cancer continues to raise global concern. Different approaches have been used in the treatment and restoration of normalcy in cancer patients. However, most of the therapeutic strategies employed are challenged with high cost, low efficacy, high toxicity, and multiple side effects. In recent times, emergent studies have provided evidence that functional foods and their bioactive components serve roles as potential agents in the prevention and treatment of cancers. Moreover, global interest has focused on how this chemoprevention potential of functional foods can be explored as plant-based medicines for drug development. Although, the literature is replete with the mechanism of chemoprevention elicited by individual components of functional foods, there are limited reports on their overall anti-cancer mechanisms.
Pharmacological Research, May 1, 2021
The recent outcry in the search for direct keap1 inhibitors requires a quicker and more effective... more The recent outcry in the search for direct keap1 inhibitors requires a quicker and more effective drug discovery process which is an inherent property of the Computer Aided Drug Discovery (CADD) to bring drug candidates into the clinic for patient's use. This Keap1 (negative regulator of ARE master activator) is emerging as a therapeutic strategy to combat oxidative stress-orchestrated diseases. The advances in computer algorithm and compound databases require that we highlight the functionalities that this technology possesses that can be exploited to target Keap1-Nrf2 PPI. Therefore, in this review, we uncover the in silico approaches that had been exploited towards the identification of keap1 inhibition in the light of appropriate fitting with relevant amino acid residues, we found 3 and 16 other compounds that perfectly fit keap1 kelch pocket/domain. Our goal is to harness the parameters that could orchestrate keap1 surface druggability by utilizing hotspot regions for virtual fragment screening and identification of hotspot residues.
Applied Biochemistry and Biotechnology
Erectile dysfunction (ED) is a major challenge for men. The drugs for its treatment are associate... more Erectile dysfunction (ED) is a major challenge for men. The drugs for its treatment are associated with side effects. Hence, in phytomedicinal research, where Anonna senegalensis (A. senegalensis) is a candidate with abundant phytochemicals possessing various pharmacological properties, but the sex-enhancing phytochemical is elusive in the literature. This study aimed to understand the molecular interaction of its potent molecule mediating male sexual enhancement. A library of 69 compounds from A. senegalensis was docked against the ED-targeted proteins. Sildenafil citrate was used as the reference standard. Thereafter, the lead compound was screened for drug-likeness by applying the Lipinski rule of 5 (RO5), pharmacokinetic properties, and bioactivity using SwissADME and Molinspiration web servers, respectively. The results show catechin as the lead phytochemical compound with a stronger binding affinity for most of the proteins of ED. Also, catechin demonstrates good compliance with the RO5, great pharmacokinetic profiles, and could be said to be a polypharmacological molecule with good bioactivity scores. The research findings unravel the potential of catechin (a phytochemical belonging to the flavonoids class) from A. senegalensis leaf as a potential male sexual enhancement molecule via its high binding affinity for most erectile dysfunction-targeted proteins. They may require further toxicity and therapeutic evaluations in vivo.
Computation (Basel), Dec 2, 2022
This article is an open access article distributed under the terms and conditions of the Creative... more This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY
Journal of Taibah University Medical Sciences
In Silico Pharmacology, Dec 18, 2023
Social Science Research Network, 2022
PubMed, Nov 1, 2017
Objectives: Increasing evidence suggests that regular physical exercise improves type 2 diabetes ... more Objectives: Increasing evidence suggests that regular physical exercise improves type 2 diabetes mellitus (T2DM). However, the potential beneficial effects of swimming on insulin resistance and lipid disorder in T2DM, and its underlying mechanisms remain unclear. Materials and methods: Rats were fed with high fat diet and given a low dosage of Streptozotocin (STZ) to induce T2DM model, and subsequently treated with or without swimming exercise. An 8-week swimming program (30, 60 or 120 min per day, 5 days per week) decreased body weight, fasting blood glucose and fasting insulin. Results: Swimming ameliorated lipid disorder, improved muscular atrophy and revealed a reduced glycogen deposit in skeletal muscles of diabetic rats. Furthermore, swimming also inhibited the activation of Wnt3a/β-catenin signaling pathway, decreased Wnt3a mRNA and protein level, upregulated GSK3β phosphorylation activity and reduced the expression of β-catenin phosphorylation in diabetic rats. Conclusion: The trend of the result suggests that swimming exercise proved to be a potent ameliorator of insulin resistancein T2DM through the modulation of Wnt3a/β-catenin pathway and therefore, could present a promising therapeutic measure towards the treatment of diabetes and its relatives.
Mitochondrion, Mar 1, 2022
Several drug targets have been amenable to drug discovery pursuit not until the characterization ... more Several drug targets have been amenable to drug discovery pursuit not until the characterization of the mitochondrial permeability transition pore (MPTP), a pore with an undefined molecular identity that forms on the inner mitochondrial membrane upon mitochondrial permeability transition (MPT) under the influence of calcium overload and oxidative stress. The opening of the pore which is presumed to cause cell death in certain human diseases also has implications under physiological parlance. The mitochondrial community has witnessed many protein candidates such as; voltage-dependent anion channel (VDAC), adenine nucleotide translocase (ANT), Mitochondrial phosphate carrier (PiC), Spastic Paralegin (SPG7), disordered proteins, and F1Fo ATPase. Also, different models for this pore have been postulated in the last six decades since it was characterized but genetic studies have cast out most of these candidates with only F1Fo ATPase currently under intense argument. Cyclophilin D (CyPD) remains the widely accepted positive regulator of the MPTP known to date, but no drug candidate has emerged as its inhibitor, raising concern issues for therapeutics. Thus, in this review, we discuss various models of MPTP reported with the hope of stimulating further research in this field. We went beyond the classical description of the MPTP to ascribe a 'two-edged sword property' to the pore for therapeutic function in human disease because its inhibition and activation have pharmacological relevance. We identified putative proteins upstream to CyPD that can regulate its activity and prevent cell deaths in neurodegenerative disease and ischemia-reperfusion injury.
Acta Biochimica Polonica, Nov 22, 2013
The statin-induced effects on high density lipoprotein (HDL) are relatively small compared with t... more The statin-induced effects on high density lipoprotein (HDL) are relatively small compared with those of low density lipoprotein (LDL) and, as a result, most clinical trials of statins are underpowered with respect to HDL parameters. This study experimentally investigated, the effects of statin on serum lipids, atherogenic index and examined the possibility of a relationship amongst serum concentrations of HDL-C, atherogenic index and activity of lecithin:cholesterol acyl transferase. Method: Thirty albino rats equally divided into 2 groups were used for the study. Group 1 was given 0.05mg/g of statin daily for 28 days, while group 2 served as control. HDL concentration was determined as a measure of HDL-C. Total cholesterol (TC), triglyceride (TG) and HDL-C were determined spectrophotometrically while LDL-C was calculated using the Frieldwald formula. Effect on the activity of lecithin:cholesterol acyl transferase was determined by the difference between the amount of free cholesterol converted to cholesteryl ester in the two experimental groups. Effects on body and relative organs weights were also determined. Results: The administration of statin caused a significant increase in serum concentration of HDL-C, while levels of LDL-C, triglyceride and total cholesterol were reduced. Simvastatin caused a significant reduction in the atherogenic index (TC/HDL-C; LDLC/HDL-C). The administration of statin significantly induced the activity of lecithin:cholesterol acyl transferase (LCAT) as evident by reduced serum concentration of free cholesterol when compared with control. The administration of statin caused reduced body and relative organs weights. Conclusion: The study showed that serum antihyperlipidemic and antiatherogenic activity of statin may involve the induction of LCAT.
Scientific Reports, Nov 18, 2016
Repaglinide is an insulin secretagogue that often exhibits considerable interindividual variabili... more Repaglinide is an insulin secretagogue that often exhibits considerable interindividual variability in therapeutic efficacy. The current study was designed to investigate the impact of KCNQ1 genetic polymorphism on the efficacy of repaglinide and furthermore to identify the potential mechanism of action in patients with type 2 diabetes. A total of 305 patients and 200 healthy subjects were genotyped for the KCNQ1 rs2237892 polymorphism, and 82 patients with T2DM were randomized for the oral administration of repaglinide for 8 weeks. HepG2 cells were incubated with repaglinide in the absence or presence of a KCNQ1 inhibitor or the pcDNA3.1-hKCNQ1 plasmid, after which the levels of Akt, IRS-2 and PI(3)K were determined. Our data showed that repaglinide significantly decreased HOMA-IR in patients with T2DM. Furthermore, the level of HOMA-IR was significantly reduced in those patients with CT or TT genotypes than CC homozygotes. The KCNQ1 inhibitor enhanced repaglinide efficacy on insulin resistance, with IRS-2/PI(3)K/Akt signaling being up-regulated markedly. As in our clinical experiment, these data strongly suggest that KCNQ1 genetic polymorphism influences repaglinide response due to the pivotal role of KCNQ1 in regulating insulin resistance through the IRS-2/PI(3)K/Akt signaling pathway. This study was registered in the Chinese Clinical Trial Register on May 14, 2013. (No. ChiCTR-CCC13003536).
Journal of Neuroscience Research, Jun 13, 2017
Diabetic encephalopathy (DE), one of the most prevalent chronic complications of diabetes mellitu... more Diabetic encephalopathy (DE), one of the most prevalent chronic complications of diabetes mellitus, is short of effective prevention and formidable therapeutic strategies. The aim of the present study is to reveal the imbalance of tryptophan (Trp) and its metabolites in streptozotocin (STZ)-induced experimental DE rats to underscore their critical values in clinical diagnosis of the disease. For this purpose, we first developed an accurate and appropriate simultaneous method for measuring Trp and its metabolites using liquid chromatography-tandem mass spectrometry, which was in accordance with the requirements of biological sample analysis. Secondly, a single STZ intraperitoneal injection was administered to male Sprague-Dawley rats, and their cognitive function was detected by Morris water maze tests. Cerebrospinal fluid (CSF), serum, and brain tissue were then collected for the determination of Trp and its metabolites. Compared with age-matched control rats, the levels of neuroprotective serotonin decreased significantly in the samples of cortices, hippocampi, striatum, CSF, and serums in the STZ-induced DE rats, while the levels of neurotoxic 3-hydroxykynurenine increased significantly. Moreover, analogous changes of both compounds were found in the central nervous system and peripheral blood of the STZ-induced DE rats. In conclusion, we established a quantitative method for the simultaneous detection of Trp and its metabolites, and we also present a critical elucidation of the nervous system dysfunction in DE.
Pharmaceutical and biomedical research, Apr 16, 2022
Review Article Inhibitors of α-glucosidase and Angiotensin-converting Enzyme in the Treatment of ... more Review Article Inhibitors of α-glucosidase and Angiotensin-converting Enzyme in the Treatment of Type 2 Diabetes and its Complications: A Review on in Silico Approach Background: The use of pharmacological agents to synergistically target key enzymes associated with carbohydrate digestion (α-glucosidase) and the hypertension-related angiotensin-converting enzyme (ACE) are critical strategies for the management of type 2 diabetes (T2D) and its end-stage complications. Furthermore, aside from their blood pressure-lowering effect, ACE inhibitors (ACEIs) are important therapeutic agents for preventing diabetic complications, highlighting their synergistic renoprotective and antihypertensive effects in diabetic patients who are normotensive and hypertensive. Objectives: We reviewed the safety and potent activity of phytochemicals discovered based on molecular docking and dynamics in recent years that could be used to treat T2D. Methods: We surveyed recently in silico drug discovery findings on α-glucosidase and ACE retrieved from the PubMed database. Computational in silico ADMET meta-analysis was performed on 57 compounds that could potentially inhibit α-glucosidase or ACE. Results: The review highlighted the fact that most hit compounds of α-glucosidase and ACE involving the use of molecular docking and molecular dynamics techniques are competitive and peptide inhibitors, respectively. Moreover, we found that most authors do not consider absorption distribution metabolism excretion toxicity (ADMET) studies on drug candidates, which is important in determining the safety profile of potent leads. Hence, we performed in silico ADMET meta-analysis of the reported compounds and found some inhibitors with an excellent pharmacological profile. Conclusion: We propose that further studies be conducted on these promising leads to demonstrate their efficacy and safety in the treatment of T2D.
Informatics in Medicine Unlocked, 2022
European Journal of Pharmacology, 2021
The passage of time that evoke aging; the tilted redox balance that contribute oxidative entropy;... more The passage of time that evoke aging; the tilted redox balance that contribute oxidative entropy; the polarization of microglia cells that produce inflammatory phenotype; all represent the intricacies of CNS-dependent disease progression. Neurological diseases that result from CNS injury raise social concerns and the available therapeutic strategies are frustrated by low efficacy, high toxicity, and multiple side effects. However, emergent studies have shown the neuroprotective role of natural compounds - including chalcones - with high efficacy in the protection of CNS structures. These compounds reportedly demonstrate neurotrophic mechanism through the upregulation of neurotrophic factors, anti-apoptotic Bcl-2, and downregulation of Bax protein; anti-neuroinflammatory mechanism via the inhibition of neuroinflammatory pathways, attenuated secretion of pro-inflammatory cytokines, prevention of blood brain barrier (BBB) disruption, and protection against nerve senescence; antioxidant mechanism through the upregulation of Nrf2 activities, inhibition of Keap1, synthesis of antioxidant enzymes, and maintenance of high antioxidant/oxidant ratio. All these mechanisms represent chalcones' neuroprotective mechanisms. In this review, we highlight different pathways involved in CNS-related diseases and elucidate various mechanisms by which chalcones can perturb these shunts as a potential therapeutic modality.
Molecular and Cellular Endocrinology, Sep 1, 2017
Diabetic cataract (DC), an identified life-threatening secondary complication of diabetes mellitu... more Diabetic cataract (DC), an identified life-threatening secondary complication of diabetes mellitus, has proven to be a dilemma because of its multifactorial caused and progression. An increasing number of studies have shown that in addition to the maillard reaction, enhanced polyol pathway, and oxidative insults, epithelial mesenchymal transition (EMT) is related to the prevalence of DC. Quercetin, a classic flavonoid with multiple pharmacological effects has been reported to possess therapeutic efficacy in the management and treatment of this disease. However, the mechanism underlying its therapeutic efficacy in EMT of lens epithelial cells (SRA01/04) and contribution to resolving DC remains a mystery. Therefore, in this study, we investigated the effects of quercetin on EMT of SRA01/04 and high-glucose (HG)induced lens opacity accompanied by lens fibrosis induced by type-1 diabetes. Furthermore, we sought to clarify the specific mechanisms underlying these effects. At week 14 after streptozotocin (STZ) intraperitoneal administration, diabetic rats showed lens opacity accompanied with diminished antioxidant function, enhanced polyol pathway activity, and non-enzymatic glycation. Western blotting confirmed EMT in rat SRA01/04 cells with significantly increased a-smooth muscle actin (a-SMA) and decreased E-cadherin expressions. Treatment of the lens with quercetin ameliorated the oxidative stress, inhibited aldose reductase (AR) activation, reduced advanced glycation end product (AGE) production, and finally suppressed EMT in the early stages. Our in vitro results showed that high-glucose activated the transforming growth factor-b2/phosphoinositide 3-kinase/protein kinase B (TGF-b2/PI3K/Akt) signalling and EMT in SRA01/04 cells. Further, induced oxidative stress, activation of aldose reductase, and accumulation of advanced glycation end products were also involved in this process. Quercetin was potent enough to effectively ameliorate the high glucose (HG)-induced EMT of SRA01/04 cells by inhibiting the activation of TGF-b2/PI3K/Akt, enhancing the antioxidant capacity, inhibiting AR activity, and reducing AGE production. From the whole animal to tissues, and finally the cellular level, our results provide considerable evidence of the therapeutic potential of quercetin for DC. This might be due to its inhibition of EMT mediated through inhibition of the TGF-b/PI3K/Akt pathway.
Biomedicine & Pharmacotherapy, Mar 1, 2020
Hyperglycemia/oxidative stress has been implicated in the initiation and progression of diabetic ... more Hyperglycemia/oxidative stress has been implicated in the initiation and progression of diabetic complications while the components of Keap1/Nrf2/ARE signaling are being exploited as therapeutic targets for the treatment/management of these pathologies. Antioxidant agents like drugs, nutraceuticals and pure compounds that target the proteins of this pathway and their downstream genes hold the therapeutic strength to put the progression of this disease at bay. Here, we elucidate how the modulation of Keap1/Nrf2/ARE had been exploited for the treatment/management of end-stage diabetic kidney complication (diabetic nephropathy) by looking into (1) Nrf2 nuclear translocation and phosphorylation by some protein kinases at specific amino acid sequences and (2) Keap1 downregulation/Keap1-Nrf2 protein-protein inhibition (PPI) as potential therapeutic mechanisms exploited by Nrf2 activators for the modulation of diabetic nephropathy biomarkers (Collagen IV, Laminin, TGF-β1 and Fibronectin) that ultimately lead to the amelioration of this disease progression. Furthermore, we brought to limelight the relationship between diabetic nephropathy and Keap1/Nrf2/ARE and finally elucidate how the modulation of this signaling pathway could be further explored to create novel therapeutic milestones.
Tropical Journal of Natural Product Research, Jun 7, 2018
Oxidative stress stems from the decrease in natural cell antioxidant capacity or an increase amou... more Oxidative stress stems from the decrease in natural cell antioxidant capacity or an increase amount of reactive oxygen species (ROS) in organisms. 1 Free radicals have been implicated in cell degeneration through oxidation of bio-molecules like DNA, membrane lipids and proteins. This oxidation can induce various pathologies which include atherogenesis, carcinogenesis, Parkinson's disease and ageing. 2 Health disorders like arthritis, cancer, diabetes mellitus, gastric ulcers, hypertension, inflammatory diseases and neurodegenerative diseases have been emphasized by scientists to emanate from unchecked activities of ROS. 3,4 However, functional foods and nutraceutical scientists emphasize the consumption of foods naturally blessed with antioxidant phytochemicals as a remedy, due to their ability to ameliorate degenerative diseases by improving the body's antioxidant status. Natural foods have been reported to possess phytochemicals and health improving biochemicals. Antioxidants chelates heavy metal ions, reduces singlet oxygen, nitrates and other free radicals, and suppress the
Critical Reviews in Oncology Hematology, Apr 1, 2023
Functional Foods in Health and Disease, Nov 5, 2021
The invasiveness and low survivability on the part of patients associated with cancer continues t... more The invasiveness and low survivability on the part of patients associated with cancer continues to raise global concern. Different approaches have been used in the treatment and restoration of normalcy in cancer patients. However, most of the therapeutic strategies employed are challenged with high cost, low efficacy, high toxicity, and multiple side effects. In recent times, emergent studies have provided evidence that functional foods and their bioactive components serve roles as potential agents in the prevention and treatment of cancers. Moreover, global interest has focused on how this chemoprevention potential of functional foods can be explored as plant-based medicines for drug development. Although, the literature is replete with the mechanism of chemoprevention elicited by individual components of functional foods, there are limited reports on their overall anti-cancer mechanisms.
Pharmacological Research, May 1, 2021
The recent outcry in the search for direct keap1 inhibitors requires a quicker and more effective... more The recent outcry in the search for direct keap1 inhibitors requires a quicker and more effective drug discovery process which is an inherent property of the Computer Aided Drug Discovery (CADD) to bring drug candidates into the clinic for patient's use. This Keap1 (negative regulator of ARE master activator) is emerging as a therapeutic strategy to combat oxidative stress-orchestrated diseases. The advances in computer algorithm and compound databases require that we highlight the functionalities that this technology possesses that can be exploited to target Keap1-Nrf2 PPI. Therefore, in this review, we uncover the in silico approaches that had been exploited towards the identification of keap1 inhibition in the light of appropriate fitting with relevant amino acid residues, we found 3 and 16 other compounds that perfectly fit keap1 kelch pocket/domain. Our goal is to harness the parameters that could orchestrate keap1 surface druggability by utilizing hotspot regions for virtual fragment screening and identification of hotspot residues.
Applied Biochemistry and Biotechnology
Erectile dysfunction (ED) is a major challenge for men. The drugs for its treatment are associate... more Erectile dysfunction (ED) is a major challenge for men. The drugs for its treatment are associated with side effects. Hence, in phytomedicinal research, where Anonna senegalensis (A. senegalensis) is a candidate with abundant phytochemicals possessing various pharmacological properties, but the sex-enhancing phytochemical is elusive in the literature. This study aimed to understand the molecular interaction of its potent molecule mediating male sexual enhancement. A library of 69 compounds from A. senegalensis was docked against the ED-targeted proteins. Sildenafil citrate was used as the reference standard. Thereafter, the lead compound was screened for drug-likeness by applying the Lipinski rule of 5 (RO5), pharmacokinetic properties, and bioactivity using SwissADME and Molinspiration web servers, respectively. The results show catechin as the lead phytochemical compound with a stronger binding affinity for most of the proteins of ED. Also, catechin demonstrates good compliance with the RO5, great pharmacokinetic profiles, and could be said to be a polypharmacological molecule with good bioactivity scores. The research findings unravel the potential of catechin (a phytochemical belonging to the flavonoids class) from A. senegalensis leaf as a potential male sexual enhancement molecule via its high binding affinity for most erectile dysfunction-targeted proteins. They may require further toxicity and therapeutic evaluations in vivo.
Computation (Basel), Dec 2, 2022
This article is an open access article distributed under the terms and conditions of the Creative... more This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY
Journal of Taibah University Medical Sciences