Nearest Neighbor Classifier — Guide to Core ML Tools (original) (raw)
Nearest Neighbor Classifier#
This topic demonstrates the process of creating an updatable empty k-nearest neighbor model using Core ML Tools.
Create the Classifier#
- Create the classifier and apply its properties:
number_of_dimensions = 128
from coremltools.models.nearest_neighbors import KNearestNeighborsClassifierBuilder
builder = KNearestNeighborsClassifierBuilder(input_name='input',
output_name='output',
number_of_dimensions=number_of_dimensions,
default_class_label='defaultLabel',
number_of_neighbors=3,
weighting_scheme='inverse_distance',
index_type='linear')
builder.author = 'Core ML Tools Example'
builder.license = 'MIT'
builder.description = 'Classifies {} dimension vector based on 3 nearest neighbors'.format(number_of_dimensions)
builder.spec.description.input[0].shortDescription = 'Input vector to classify'
builder.spec.description.output[0].shortDescription = 'Predicted label. Defaults to 'defaultLabel''
builder.spec.description.output[1].shortDescription = 'Probabilities / score for each possible label.'
builder.spec.description.trainingInput[0].shortDescription = 'Example input vector'
builder.spec.description.trainingInput[1].shortDescription = 'Associated true label of each example vector'
Note
An empty knn
model is updatable by default:
By default an empty knn model is updatable
builder.is_updatable 2. Confirm that the number of dimensions are set correctly:
Let's confirm the number of dimension is set correctly
builder.number_of_dimensions
Set the Number of Neighbors Value#
- Verify the current number of neighbors value:
Let's check what the value of 'numberOfNeighbors' is
builder.number_of_neighbors
Note
The number of neighbors is bounded by the default range:
# The number of neighbors is bounded by the default range...
builder.number_of_neighbors_allowed_range()
If you set the number of neighbors to a value outside of this default range, an ValueError
will occur as shown in the Out tab:
# If we try to set the number of neighbors to a value outside of this range
builder.number_of_neighbors = 1001
ValueError Traceback (most recent call last)
in
1 # If we try to set the number of neighbors to a value outside of this range
----> 2 builder.number_of_neighbors = 1001
~/eng/sources/coreml/coremltools/coremltools/models/nearest_neighbors/builder.py in number_of_neighbors(self, number_of_neighbors)
312 self.spec.kNearestNeighborsClassifier.numberOfNeighbors.defaultValue = number_of_neighbors
313 else:
--> 314 raise ValueError('number_of_neighbors is not within range bounds')
315 else:
316 spec_values = self.spec.kNearestNeighborsClassifier.numberOfNeighbors.set.values
ValueError: number_of_neighbors is not within range bounds
2. Change the bounds for the number of neighbors. Individual values can be set for the numberOfNeighbors
parameter:
# Instead of a range, you can a set individual values that are valid for the numberOfNeighbors parameter.
builder.set_number_of_neighbors_with_bounds(3, allowed_set={ 1, 3, 5 })
3. Verify change using the number_of_neighbors_allowed_set()
method.
# Check out the results of the previous operation
builder.number_of_neighbors_allowed_set()
4. The number of neighbors value can now be set without an error:
# And now if you attempt to set it to an invalid value...
builder.number_of_neighbors = 4
ValueError Traceback (most recent call last)
in
1 # And now if you attempt to set it to an invalid value...
----> 2 builder.number_of_neighbors = 4
~/eng/sources/coreml/coremltools/coremltools/models/nearest_neighbors/builder.py in number_of_neighbors(self, number_of_neighbors)
320 self.spec.kNearestNeighborsClassifier.numberOfNeighbors.defaultValue = number_of_neighbors
321 return
--> 322 raise ValueError('number_of_neighbors is not an allowed value')
323
324 def set_number_of_neighbors_with_bounds(self, number_of_neighbors, allowed_range=None, allowed_set=None):
ValueError: number_of_neighbors is not valid
If desired, you can revert back to a valid range:
And of course you can go back to a valid range
builder.set_number_of_neighbors_with_bounds(3, allowed_range=(1, 30))
Set the Index Type#
- Verify the current index type:
Let's see what the index type is
builder.index_type 2. Set the index and leaf size:
Let's set the index to kd_tree with leaf size of 30
builder.set_index_type('kd_tree', 30)
builder.index_type
3. Save the model:
mlmodel_updatable_path = './UpdatableKNN.mlmodel'
Save the updated spec
from coremltools.models import MLModel
mlmodel_updatable = MLModel(builder.spec)
mlmodel_updatable.save(mlmodel_updatable_path)