nki.isa.tensor_copy_dynamic_src — AWS Neuron Documentation (original) (raw)

This document is relevant for: Inf2, Trn1, Trn2

nki.isa.tensor_copy_dynamic_src#

nki.isa.tensor_copy_dynamic_src(src, *, mask=None, dtype=None, engine=engine.unknown, **kwargs)[source]#

Create a copy of src tile within NeuronCore on-chip SRAMs using Vector or Scalar or GpSimd Engine, with src located at a dynamic offset within each partition.

Both source and destination tiles can be in either SBUF or PSUM. By default, this API returns a tile in SBUF, unless the returned value is assigned to a pre-declared PSUM tile.

The source and destination tiles must also have the same number of partitions and the same number of elements per partition.

The dynamic offset must be a scalar value resided in SBUF. If you have a list of dynamic offsets for gathering tiles in SBUF/PSUM, you may loop over each offset and call tensor_copy_dynamic_srconce per offset.

Estimated instruction cost:

max(MIN_II_DYNAMIC, N) engine cycles, where:

Parameters:

Example:

import neuronxcc.nki.typing as nt import neuronxcc.nki.isa as nisa import neuronxcc.nki.language as nl ...

#########################################################################################

TensorCopyDynamicSrc example 0:

- src_tensor in HBM of shape [128, 512]

- offsets in HBM of shape [1, 64] (with values [4, 5, 6, 7, ...])

- Gather tiles of shape [128, 1] from src_tensor into out_tensor using offsets

#########################################################################################

Load src_tensor and offsets into SBUF

src_tensor_sbuf: nt.tensor[128, 512] = nl.load(src_tensor) offsets_sbuf: nt.tensor[1, 64] = nl.load(offsets)

Copy into output tensor in SBUF

out_sbuf: nt.tensor[128, 64] = nl.ndarray([128, 64], dtype=src_tensor.dtype, buffer=nl.sbuf)

Static indices to access a tile of shape [128, 1];

Add dynamic offsets to iy for tensor_copy_dynamic_src

ix, iy = nl.mgrid[0:128, 0:1]

for idx in nl.affine_range(offsets_sbuf.shape[1]): out_sbuf[ix, idx] = nisa.tensor_copy_dynamic_src( src_tensor_sbuf[ix, offsets_sbuf[0, idx] + iy])

nl.store(out_tensor, value=out_sbuf) ...

import neuronxcc.nki.typing as nt import neuronxcc.nki.isa as nisa import neuronxcc.nki.language as nl ...

#########################################################################################

TensorCopyDynamicSrc example 1:

- src_tensor in HBM of shape [128, 512, 4]

- offsets in HBM of shape [1 x 8] (with values [4, 5, 6, 7, ...]) to index into

second axis of src_tensor

- Gather tiles of shape [128, 4] from src_tensor into out_tensor using offsets

#########################################################################################

Load src_tensor and offsets into SBUF

src_tensor_sbuf: nt.tensor[128, 512, 4] = nl.load(src_tensor) offsets_sbuf: nt.tensor[1, 8] = nl.load(offsets)

Copy into output tensor in SBUF

out_sbuf: nt.tensor[128, 8, 4] = nl.ndarray([128, 8, 4], dtype=src_tensor.dtype, buffer=nl.sbuf)

Static indices to access a tile of shape [128, 1, 4];

Use dynamic offsets directly to index the second axis for tensor_copy_dynamic_src

ix, _, iz = nl.mgrid[0:128, 0:1, 0:4]

for idx in nl.affine_range(offsets.shape[1]): out_sbuf[ix, idx, iz] = nisa.tensor_copy_dynamic_src( src_tensor_sbuf[ix, offsets_sbuf[0, idx], iz])

nl.store(out_tensor, value=out_sbuf) ...

This document is relevant for: Inf2, Trn1, Trn2