Running Huggingface DistilBERT with TensorFlow-Neuron — AWS Neuron Documentation (original) (raw)

Contents

Running Huggingface DistilBERT with TensorFlow-Neuron#

In this tutorial you will compile and deploy DistilBERT version of HuggingFace 🤗 Transformers BERT for Inferentia using TensorFlow-Neuron. The full list of HuggingFace’s pretrained BERT models can be found in the BERT section on this page https://huggingface.co/transformers/pretrained_models.html. you can also read about HuggingFace’s pipeline feature here: https://huggingface.co/transformers/main_classes/pipelines.html

This Jupyter notebook should be run on an instance which is inf1.6xlarge or larger, but in real life scenario the compilation should be done on a compute instance and the deployment on inf1 instance to save costs.

Setup#

To run this tutorial please follow the instructions for TensorFlow-Neuron Setup and the Jupyter Notebook Quickstart and set your kernel to “Python (tensorflow-neuron)” .

Next, install some additional dependencies.

%env TOKENIZERS_PARALLELISM=True #Supresses tokenizer warnings making errors easier to detect !pip install transformers==4.30.2 !pip install ipywidgets

Download From Huggingface and Compile for AWS-Neuron#

import tensorflow as tf import tensorflow_neuron as tfn from transformers import DistilBertTokenizer, TFDistilBertModel

Create a wrapper for the roberta model that will accept inputs as a list

instead of a dictionary. This will allow the compiled model to be saved

to disk with the model.save() fucntion.

class DistilBertWrapper(tf.keras.Model): def init(self, model): super().init() self.model = model def call(self, example_inputs): return self.model({'input_ids' : example_inputs[0], 'attention_mask' : example_inputs[1]})

tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased-finetuned-sst-2-english') model = DistilBertWrapper(TFDistilBertModel.from_pretrained('distilbert-base-uncased-finetuned-sst-2-english'))

batch_size = 16

create example inputs with a batch size of 16

text = ["Paris is the of France."] * batch_size encoded_input = tokenizer(text, return_tensors='tf', padding='max_length', max_length=64)

turn inputs into a list

example_input = [encoded_input['input_ids'], encoded_input['attention_mask']]

#compile model_neuron = tfn.trace(model, example_input)

print("Running on neuron:", model_neuron(example_input))

save the model to disk to save recompilation time for next usage

model_neuron.save('./distilbert-neuron-b16')

Run Basic Inference Benchmarking#

import numpy as np import concurrent.futures import time

reloaded_neuron_model = tf.keras.models.load_model('./distilbert-neuron-b16') print("Reloaded model running on neuron:", reloaded_neuron_model(example_input))

num_threads = 4 num_inferences = 1000

latency_list = [] def inference_with_latency_calculation(example_input): global latency_list start = time.time() result = reloaded_neuron_model(example_input) end = time.time() latency_list.append((end-start) * 1000) return result

start = time.time() with concurrent.futures.ThreadPoolExecutor(max_workers=num_threads) as executor: futures = [] for i in range(num_inferences): futures.append(executor.submit(inference_with_latency_calculation, example_input)) for future in concurrent.futures.as_completed(futures): get_result = future.result() end = time.time()

total_time = end - start throughput = (num_inferences * batch_size)/total_time

print(f"Throughput was {throughput} samples per second.") print(f"Latency p50 was {np.percentile(latency_list, 50)} ms") print(f"Latency p90 was {np.percentile(latency_list, 90)} ms") print(f"Latency p95 was {np.percentile(latency_list, 95)} ms") print(f"Latency p99 was {np.percentile(latency_list, 99)} ms") assert(throughput >= 1930.0)