clang: lib/CodeGen/CGExprComplex.cpp Source File (original) (raw)
1
2
3
4
5
6
7
8
9
10
11
12
19#include "llvm/IR/Constants.h"
20#include "llvm/IR/Instructions.h"
21#include "llvm/IR/MDBuilder.h"
22#include "llvm/IR/Metadata.h"
23using namespace clang;
25
26
27
28
29
30namespace llvm {
32}
33
35
36
38 type = type.getCanonicalType();
39 if (const ComplexType *comp = dyn_cast(type)) {
40 return comp;
41 } else {
43 }
44}
45
46namespace {
47class ComplexExprEmitter
48 : public StmtVisitor<ComplexExprEmitter, ComplexPairTy> {
49 CodeGenFunction &CGF;
50 CGBuilderTy &Builder;
51 bool IgnoreReal;
52 bool IgnoreImag;
53 bool FPHasBeenPromoted;
54
55public:
56 ComplexExprEmitter(CodeGenFunction &cgf, bool ir = false, bool ii = false)
57 : CGF(cgf), Builder(CGF.Builder), IgnoreReal(ir), IgnoreImag(ii),
58 FPHasBeenPromoted(false) {}
59
60
61
62
63
64 bool TestAndClearIgnoreReal() {
65 bool I = IgnoreReal;
66 IgnoreReal = false;
67 return I;
68 }
69 bool TestAndClearIgnoreImag() {
70 bool I = IgnoreImag;
71 IgnoreImag = false;
72 return I;
73 }
74
75
76
77
80 }
81
82 ComplexPairTy EmitLoadOfLValue(LValue LV, SourceLocation Loc);
83
84
85
86 void EmitStoreOfComplex(ComplexPairTy Val, LValue LV, bool isInit);
87
88
90 QualType DestType, SourceLocation Loc);
91
92 ComplexPairTy EmitScalarToComplexCast(llvm::Value *Val, QualType SrcType,
93 QualType DestType, SourceLocation Loc);
94
95
96
97
98
100 ApplyDebugLocation DL(CGF, E);
101 return StmtVisitor<ComplexExprEmitter, ComplexPairTy>::Visit(E);
102 }
103
106 llvm_unreachable("Stmt can't have complex result type!");
107 }
109 ComplexPairTy VisitConstantExpr(ConstantExpr *E) {
110 if (llvm::Constant *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E))
112 Result->getAggregateElement(1U));
114 }
116 ComplexPairTy VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
117 return Visit(GE->getResultExpr());
118 }
119 ComplexPairTy VisitImaginaryLiteral(const ImaginaryLiteral *IL);
121 VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) {
123 }
126 }
129 }
130 ComplexPairTy VisitUnaryCoawait(const UnaryOperator *E) {
132 }
133
134 ComplexPairTy emitConstant(const CodeGenFunction::ConstantEmission &Constant,
135 Expr *E) {
136 assert(Constant && "not a constant");
140
141 llvm::Constant *pair = Constant.getValue();
142 return ComplexPairTy(pair->getAggregateElement(0U),
143 pair->getAggregateElement(1U));
144 }
145
146
148 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
149 return emitConstant(Constant, E);
150 return EmitLoadOfLValue(E);
151 }
152 ComplexPairTy VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
153 return EmitLoadOfLValue(E);
154 }
155 ComplexPairTy VisitObjCMessageExpr(ObjCMessageExpr *E) {
157 }
158 ComplexPairTy VisitArraySubscriptExpr(Expr *E) { return EmitLoadOfLValue(E); }
160 if (CodeGenFunction::ConstantEmission Constant =
163 return emitConstant(Constant, ME);
164 }
165 return EmitLoadOfLValue(ME);
166 }
167 ComplexPairTy VisitOpaqueValueExpr(OpaqueValueExpr *E) {
172 }
173
174 ComplexPairTy VisitPseudoObjectExpr(PseudoObjectExpr *E) {
176 }
177
178
179
181 ComplexPairTy VisitImplicitCastExpr(ImplicitCastExpr *E) {
182
183
185 return EmitLoadOfLValue(E);
187 }
189 if (const auto *ECE = dyn_cast(E))
192 return EmitLoadOfLValue(E);
194 }
197
198
199 ComplexPairTy VisitPrePostIncDec(const UnaryOperator *E,
200 bool isInc, bool isPre) {
203 }
204 ComplexPairTy VisitUnaryPostDec(const UnaryOperator *E) {
205 return VisitPrePostIncDec(E, false, false);
206 }
207 ComplexPairTy VisitUnaryPostInc(const UnaryOperator *E) {
208 return VisitPrePostIncDec(E, true, false);
209 }
210 ComplexPairTy VisitUnaryPreDec(const UnaryOperator *E) {
211 return VisitPrePostIncDec(E, false, true);
212 }
213 ComplexPairTy VisitUnaryPreInc(const UnaryOperator *E) {
214 return VisitPrePostIncDec(E, true, true);
215 }
216 ComplexPairTy VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
217
218 ComplexPairTy VisitUnaryPlus(const UnaryOperator *E,
219 QualType PromotionType = QualType());
220 ComplexPairTy VisitPlus(const UnaryOperator *E, QualType PromotionType);
221 ComplexPairTy VisitUnaryMinus(const UnaryOperator *E,
222 QualType PromotionType = QualType());
223 ComplexPairTy VisitMinus(const UnaryOperator *E, QualType PromotionType);
224 ComplexPairTy VisitUnaryNot (const UnaryOperator *E);
225
226 ComplexPairTy VisitUnaryExtension(const UnaryOperator *E) {
228 }
229 ComplexPairTy VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
230 CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
231 return Visit(DAE->getExpr());
232 }
233 ComplexPairTy VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
234 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
235 return Visit(DIE->getExpr());
236 }
237 ComplexPairTy VisitExprWithCleanups(ExprWithCleanups *E) {
238 CodeGenFunction::RunCleanupsScope Scope(CGF);
240
241
242 Scope.ForceCleanup({&Vals.first, &Vals.second});
243 return Vals;
244 }
245 ComplexPairTy VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
247 QualType Elem = E->getType()->castAs()->getElementType();
248 llvm::Constant *Null = llvm::Constant::getNullValue(CGF.ConvertType(Elem));
250 }
251 ComplexPairTy VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
253 QualType Elem = E->getType()->castAs()->getElementType();
254 llvm::Constant *Null =
255 llvm::Constant::getNullValue(CGF.ConvertType(Elem));
257 }
258
259 struct BinOpInfo {
262 QualType Ty;
263 FPOptions FPFeatures;
264 };
265
266 BinOpInfo EmitBinOps(const BinaryOperator *E,
267 QualType PromotionTy = QualType());
268 ComplexPairTy EmitPromoted(const Expr *E, QualType PromotionTy);
269 ComplexPairTy EmitPromotedComplexOperand(const Expr *E, QualType PromotionTy);
270 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
272 (const BinOpInfo &),
273 RValue &Val);
274 ComplexPairTy EmitCompoundAssign(const CompoundAssignOperator *E,
276 (const BinOpInfo &));
277
282 ComplexPairTy EmitAlgebraicDiv(llvm::Value *A, llvm::Value *B, llvm::Value *C,
283 llvm::Value *D);
284 ComplexPairTy EmitRangeReductionDiv(llvm::Value *A, llvm::Value *B,
285 llvm::Value *C, llvm::Value *D);
286
287 ComplexPairTy EmitComplexBinOpLibCall(StringRef LibCallName,
288 const BinOpInfo &Op);
289
290 QualType HigherPrecisionTypeForComplexArithmetic(QualType ElementType) {
292 const QualType HigherElementType =
294 const llvm::fltSemantics &ElementTypeSemantics =
296 const llvm::fltSemantics &HigherElementTypeSemantics =
298
299
300
301
302
303
304
305 if (llvm::APFloat::semanticsMaxExponent(ElementTypeSemantics) * 2 + 1 <=
306 llvm::APFloat::semanticsMaxExponent(HigherElementTypeSemantics)) {
310 return QualType();
311 FPHasBeenPromoted = true;
313 } else {
314
315
316 return QualType();
317 }
318 }
319
320 QualType getPromotionType(FPOptionsOverride Features, QualType Ty,
321 bool IsComplexDivisor) {
322 if (auto *CT = Ty->getAs()) {
323 QualType ElementType = CT->getElementType().getCanonicalType();
325 bool IsComplexRangePromoted = CGF.getLangOpts().getComplexRange() ==
326 LangOptions::ComplexRangeKind::CX_Promoted;
327 bool HasNoComplexRangeOverride = !Features.hasComplexRangeOverride();
328 bool HasMatchingComplexRange = Features.hasComplexRangeOverride() &&
329 Features.getComplexRangeOverride() ==
331
332 if (IsComplexDivisor && IsFloatingType && IsComplexRangePromoted &&
333 (HasNoComplexRangeOverride || HasMatchingComplexRange))
334 return HigherPrecisionTypeForComplexArithmetic(ElementType);
337 }
340 return QualType();
341 }
342
343#define HANDLEBINOP(OP) \
344 ComplexPairTy VisitBin##OP(const BinaryOperator *E) { \
345 QualType promotionTy = \
346 getPromotionType(E->getStoredFPFeaturesOrDefault(), E->getType(), \
347 (E->getOpcode() == BinaryOperatorKind::BO_Div && \
348 E->getRHS()->getType()->isAnyComplexType())); \
349 ComplexPairTy result = EmitBin##OP(EmitBinOps(E, promotionTy)); \
350 if (!promotionTy.isNull()) \
351 result = CGF.EmitUnPromotedValue(result, E->getType()); \
352 return result; \
353 }
354
359#undef HANDLEBINOP
360
363 }
364
365
366 ComplexPairTy VisitBinAddAssign(const CompoundAssignOperator *E) {
368 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinAdd);
369 }
370 ComplexPairTy VisitBinSubAssign(const CompoundAssignOperator *E) {
372 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinSub);
373 }
374 ComplexPairTy VisitBinMulAssign(const CompoundAssignOperator *E) {
376 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinMul);
377 }
378 ComplexPairTy VisitBinDivAssign(const CompoundAssignOperator *E) {
380 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinDiv);
381 }
382
383
384
385
386
387
388 LValue EmitBinAssignLValue(const BinaryOperator *E,
390 ComplexPairTy VisitBinAssign (const BinaryOperator *E);
391 ComplexPairTy VisitBinComma (const BinaryOperator *E);
392
393
395 VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
397
398 ComplexPairTy VisitInitListExpr(InitListExpr *E);
399
400 ComplexPairTy VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
401 return EmitLoadOfLValue(E);
402 }
403
405
408 }
409
410 ComplexPairTy VisitPackIndexingExpr(PackIndexingExpr *E) {
412 }
413};
414}
415
416
417
418
419
422 return Builder.CreateStructGEP(addr, 0, addr.getName() + ".realp");
423}
424
427 return Builder.CreateStructGEP(addr, 1, addr.getName() + ".imagp");
428}
429
430
431
434 assert(lvalue.isSimple() && "non-simple complex l-value?");
437
440
441 llvm::Value *Real = nullptr, *Imag = nullptr;
442
443 if (!IgnoreReal || isVolatile) {
445 Real = Builder.CreateLoad(RealP, isVolatile, SrcPtr.getName() + ".real");
446 }
447
448 if (!IgnoreImag || isVolatile) {
450 Imag = Builder.CreateLoad(ImagP, isVolatile, SrcPtr.getName() + ".imag");
451 }
452
454}
455
456
457
458void ComplexExprEmitter::EmitStoreOfComplex(ComplexPairTy Val, LValue lvalue,
459 bool isInit) {
460 if (lvalue.getType()->isAtomicType() ||
463
464 Address Ptr = lvalue.getAddress();
467
468 auto *R =
469 Builder.CreateStore(Val.first, RealPtr, lvalue.isVolatileQualified());
471 auto *I =
472 Builder.CreateStore(Val.second, ImagPtr, lvalue.isVolatileQualified());
474}
475
476
477
478
479
480
481
482ComplexPairTy ComplexExprEmitter::VisitExpr(Expr *E) {
484 llvm::Type *EltTy =
486 llvm::Value *U = llvm::PoisonValue::get(EltTy);
488}
489
491VisitImaginaryLiteral(const ImaginaryLiteral *IL) {
493 return ComplexPairTy(llvm::Constant::getNullValue(Imag->getType()), Imag);
494}
495
496
497ComplexPairTy ComplexExprEmitter::VisitCallExpr(const CallExpr *E) {
499 return EmitLoadOfLValue(E);
500
502}
503
504ComplexPairTy ComplexExprEmitter::VisitStmtExpr(const StmtExpr *E) {
507 assert(RetAlloca.isValid() && "Expected complex return value");
510}
511
512
514 QualType SrcType,
515 QualType DestType,
516 SourceLocation Loc) {
517
518 SrcType = SrcType->castAs()->getElementType();
519 DestType = DestType->castAs()->getElementType();
520
521
522
523
524 if (Val.first)
526 if (Val.second)
528 return Val;
529}
530
531ComplexPairTy ComplexExprEmitter::EmitScalarToComplexCast(llvm::Value *Val,
532 QualType SrcType,
533 QualType DestType,
534 SourceLocation Loc) {
535
536 DestType = DestType->castAs()->getElementType();
538
539
540 return ComplexPairTy(Val, llvm::Constant::getNullValue(Val->getType()));
541}
542
544 QualType DestTy) {
545 switch (CK) {
546 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
547
548
549
550 case CK_AtomicToNonAtomic:
551 case CK_NonAtomicToAtomic:
552 case CK_NoOp:
553 case CK_LValueToRValue:
554 case CK_UserDefinedConversion:
555 return Visit(Op);
556
557 case CK_LValueBitCast: {
559 Address V = origLV.getAddress().withElementType(CGF.ConvertType(DestTy));
561 }
562
563 case CK_LValueToRValueBitCast: {
566 SourceLVal.getAddress().withElementType(CGF.ConvertTypeForMem(DestTy));
569 return EmitLoadOfLValue(DestLV, Op->getExprLoc());
570 }
571
572 case CK_BitCast:
573 case CK_BaseToDerived:
574 case CK_DerivedToBase:
575 case CK_UncheckedDerivedToBase:
576 case CK_Dynamic:
577 case CK_ToUnion:
578 case CK_ArrayToPointerDecay:
579 case CK_FunctionToPointerDecay:
580 case CK_NullToPointer:
581 case CK_NullToMemberPointer:
582 case CK_BaseToDerivedMemberPointer:
583 case CK_DerivedToBaseMemberPointer:
584 case CK_MemberPointerToBoolean:
585 case CK_ReinterpretMemberPointer:
586 case CK_ConstructorConversion:
587 case CK_IntegralToPointer:
588 case CK_PointerToIntegral:
589 case CK_PointerToBoolean:
590 case CK_ToVoid:
591 case CK_VectorSplat:
592 case CK_IntegralCast:
593 case CK_BooleanToSignedIntegral:
594 case CK_IntegralToBoolean:
595 case CK_IntegralToFloating:
596 case CK_FloatingToIntegral:
597 case CK_FloatingToBoolean:
598 case CK_FloatingCast:
599 case CK_CPointerToObjCPointerCast:
600 case CK_BlockPointerToObjCPointerCast:
601 case CK_AnyPointerToBlockPointerCast:
602 case CK_ObjCObjectLValueCast:
603 case CK_FloatingComplexToReal:
604 case CK_FloatingComplexToBoolean:
605 case CK_IntegralComplexToReal:
606 case CK_IntegralComplexToBoolean:
607 case CK_ARCProduceObject:
608 case CK_ARCConsumeObject:
609 case CK_ARCReclaimReturnedObject:
610 case CK_ARCExtendBlockObject:
611 case CK_CopyAndAutoreleaseBlockObject:
612 case CK_BuiltinFnToFnPtr:
613 case CK_ZeroToOCLOpaqueType:
614 case CK_AddressSpaceConversion:
615 case CK_IntToOCLSampler:
616 case CK_FloatingToFixedPoint:
617 case CK_FixedPointToFloating:
618 case CK_FixedPointCast:
619 case CK_FixedPointToBoolean:
620 case CK_FixedPointToIntegral:
621 case CK_IntegralToFixedPoint:
622 case CK_MatrixCast:
623 case CK_HLSLVectorTruncation:
624 case CK_HLSLMatrixTruncation:
625 case CK_HLSLArrayRValue:
626 case CK_HLSLElementwiseCast:
627 case CK_HLSLAggregateSplatCast:
628 llvm_unreachable("invalid cast kind for complex value");
629
630 case CK_FloatingRealToComplex:
631 case CK_IntegralRealToComplex: {
635 }
636
637 case CK_FloatingComplexCast:
638 case CK_FloatingComplexToIntegralComplex:
639 case CK_IntegralComplexCast:
640 case CK_IntegralComplexToFloatingComplex: {
642 return EmitComplexToComplexCast(Visit(Op), Op->getType(), DestTy,
644 }
645 }
646
647 llvm_unreachable("unknown cast resulting in complex value");
648}
649
650ComplexPairTy ComplexExprEmitter::VisitUnaryPlus(const UnaryOperator *E,
651 QualType PromotionType) {
652 QualType promotionTy =
653 PromotionType.isNull()
656 false)
657 : PromotionType;
658 ComplexPairTy result = VisitPlus(E, promotionTy);
659 if (!promotionTy.isNull())
661 return result;
662}
663
664ComplexPairTy ComplexExprEmitter::VisitPlus(const UnaryOperator *E,
665 QualType PromotionType) {
666 TestAndClearIgnoreReal();
667 TestAndClearIgnoreImag();
668 if (!PromotionType.isNull())
671}
672
673ComplexPairTy ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *E,
674 QualType PromotionType) {
675 QualType promotionTy =
676 PromotionType.isNull()
679 false)
680 : PromotionType;
681 ComplexPairTy result = VisitMinus(E, promotionTy);
682 if (!promotionTy.isNull())
684 return result;
685}
686ComplexPairTy ComplexExprEmitter::VisitMinus(const UnaryOperator *E,
687 QualType PromotionType) {
688 TestAndClearIgnoreReal();
689 TestAndClearIgnoreImag();
691 if (!PromotionType.isNull())
693 else
695
696 llvm::Value *ResR, *ResI;
697 if (Op.first->getType()->isFloatingPointTy()) {
698 ResR = Builder.CreateFNeg(Op.first, "neg.r");
699 ResI = Builder.CreateFNeg(Op.second, "neg.i");
700 } else {
701 ResR = Builder.CreateNeg(Op.first, "neg.r");
702 ResI = Builder.CreateNeg(Op.second, "neg.i");
703 }
705}
706
707ComplexPairTy ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
708 TestAndClearIgnoreReal();
709 TestAndClearIgnoreImag();
710
712 llvm::Value *ResI;
713 if (Op.second->getType()->isFloatingPointTy())
714 ResI = Builder.CreateFNeg(Op.second, "conj.i");
715 else
716 ResI = Builder.CreateNeg(Op.second, "conj.i");
717
719}
720
721ComplexPairTy ComplexExprEmitter::EmitBinAdd(const BinOpInfo &Op) {
722 llvm::Value *ResR, *ResI;
723
724 if (Op.LHS.first->getType()->isFloatingPointTy()) {
726 ResR = Builder.CreateFAdd(Op.LHS.first, Op.RHS.first, "add.r");
727 if (Op.LHS.second && Op.RHS.second)
728 ResI = Builder.CreateFAdd(Op.LHS.second, Op.RHS.second, "add.i");
729 else
730 ResI = Op.LHS.second ? Op.LHS.second : Op.RHS.second;
731 assert(ResI && "Only one operand may be real!");
732 } else {
733 ResR = Builder.CreateAdd(Op.LHS.first, Op.RHS.first, "add.r");
734 assert(Op.LHS.second && Op.RHS.second &&
735 "Both operands of integer complex operators must be complex!");
736 ResI = Builder.CreateAdd(Op.LHS.second, Op.RHS.second, "add.i");
737 }
739}
740
741ComplexPairTy ComplexExprEmitter::EmitBinSub(const BinOpInfo &Op) {
742 llvm::Value *ResR, *ResI;
743 if (Op.LHS.first->getType()->isFloatingPointTy()) {
745 ResR = Builder.CreateFSub(Op.LHS.first, Op.RHS.first, "sub.r");
746 if (Op.LHS.second && Op.RHS.second)
747 ResI = Builder.CreateFSub(Op.LHS.second, Op.RHS.second, "sub.i");
748 else
749 ResI = Op.LHS.second ? Op.LHS.second
750 : Builder.CreateFNeg(Op.RHS.second, "sub.i");
751 assert(ResI && "Only one operand may be real!");
752 } else {
753 ResR = Builder.CreateSub(Op.LHS.first, Op.RHS.first, "sub.r");
754 assert(Op.LHS.second && Op.RHS.second &&
755 "Both operands of integer complex operators must be complex!");
756 ResI = Builder.CreateSub(Op.LHS.second, Op.RHS.second, "sub.i");
757 }
759}
760
761
762ComplexPairTy ComplexExprEmitter::EmitComplexBinOpLibCall(StringRef LibCallName,
763 const BinOpInfo &Op) {
766 Op.Ty->castAs()->getElementType());
768 Op.Ty->castAs()->getElementType());
770 Op.Ty->castAs()->getElementType());
772 Op.Ty->castAs()->getElementType());
773
774
775
776
777
778
779
780 FunctionProtoType::ExtProtoInfo EPI;
783 SmallVector<QualType, 4> ArgsQTys(
784 4, Op.Ty->castAs()->getElementType());
788
791 FTy, LibCallName, llvm::AttributeList(), true);
793
794 llvm::CallBase *Call;
798}
799
800
801
803 switch (Ty->getTypeID()) {
804 default:
805 llvm_unreachable("Unsupported floating point type!");
806 case llvm::Type::HalfTyID:
807 return "__mulhc3";
808 case llvm::Type::FloatTyID:
809 return "__mulsc3";
810 case llvm::Type::DoubleTyID:
811 return "__muldc3";
812 case llvm::Type::PPC_FP128TyID:
813 return "__multc3";
814 case llvm::Type::X86_FP80TyID:
815 return "__mulxc3";
816 case llvm::Type::FP128TyID:
817 return "__multc3";
818 }
819}
820
821
822
823ComplexPairTy ComplexExprEmitter::EmitBinMul(const BinOpInfo &Op) {
824 using llvm::Value;
825 Value *ResR, *ResI;
827
828 if (Op.LHS.first->getType()->isFloatingPointTy()) {
829
830
831
832
833
834
836 if (Op.LHS.second && Op.RHS.second) {
837
838
839
840
841
842
843
844
845
846
847 Value *AC = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul_ac");
848 Value *BD = Builder.CreateFMul(Op.LHS.second, Op.RHS.second, "mul_bd");
849 Value *AD = Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul_ad");
850 Value *BC = Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul_bc");
851
852
853
854 ResR = Builder.CreateFSub(AC, BD, "mul_r");
855 ResI = Builder.CreateFAdd(AD, BC, "mul_i");
856
861
862
863
864 Value *IsRNaN = Builder.CreateFCmpUNO(ResR, ResR, "isnan_cmp");
865 llvm::BasicBlock *ContBB = CGF.createBasicBlock("complex_mul_cont");
866 llvm::BasicBlock *INaNBB = CGF.createBasicBlock("complex_mul_imag_nan");
867 llvm::Instruction *Branch = Builder.CreateCondBr(IsRNaN, INaNBB, ContBB);
868 llvm::BasicBlock *OrigBB = Branch->getParent();
869
870
871 llvm::MDNode *BrWeight = MDHelper.createUnlikelyBranchWeights();
872 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight);
873
874
876 Value *IsINaN = Builder.CreateFCmpUNO(ResI, ResI, "isnan_cmp");
877 llvm::BasicBlock *LibCallBB = CGF.createBasicBlock("complex_mul_libcall");
878 Branch = Builder.CreateCondBr(IsINaN, LibCallBB, ContBB);
879 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight);
880
881
883 Value *LibCallR, *LibCallI;
884 std::tie(LibCallR, LibCallI) = EmitComplexBinOpLibCall(
886 Builder.CreateBr(ContBB);
887
888
889
891 llvm::PHINode *RealPHI = Builder.CreatePHI(ResR->getType(), 3, "real_mul_phi");
892 RealPHI->addIncoming(ResR, OrigBB);
893 RealPHI->addIncoming(ResR, INaNBB);
894 RealPHI->addIncoming(LibCallR, LibCallBB);
895 llvm::PHINode *ImagPHI = Builder.CreatePHI(ResI->getType(), 3, "imag_mul_phi");
896 ImagPHI->addIncoming(ResI, OrigBB);
897 ImagPHI->addIncoming(ResI, INaNBB);
898 ImagPHI->addIncoming(LibCallI, LibCallBB);
900 }
901 assert((Op.LHS.second || Op.RHS.second) &&
902 "At least one operand must be complex!");
903
904
905
906
907 ResR = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul.rl");
908
909 ResI = Op.LHS.second
910 ? Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul.il")
911 : Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul.ir");
912 } else {
913 assert(Op.LHS.second && Op.RHS.second &&
914 "Both operands of integer complex operators must be complex!");
915 Value *ResRl = Builder.CreateMul(Op.LHS.first, Op.RHS.first, "mul.rl");
916 Value *ResRr = Builder.CreateMul(Op.LHS.second, Op.RHS.second, "mul.rr");
917 ResR = Builder.CreateSub(ResRl, ResRr, "mul.r");
918
919 Value *ResIl = Builder.CreateMul(Op.LHS.second, Op.RHS.first, "mul.il");
920 Value *ResIr = Builder.CreateMul(Op.LHS.first, Op.RHS.second, "mul.ir");
921 ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i");
922 }
924}
925
926ComplexPairTy ComplexExprEmitter::EmitAlgebraicDiv(llvm::Value *LHSr,
927 llvm::Value *LHSi,
928 llvm::Value *RHSr,
929 llvm::Value *RHSi) {
930
931 llvm::Value *DSTr, *DSTi;
932
933 llvm::Value *AC = Builder.CreateFMul(LHSr, RHSr);
934 llvm::Value *BD = Builder.CreateFMul(LHSi, RHSi);
935 llvm::Value *ACpBD = Builder.CreateFAdd(AC, BD);
936
937 llvm::Value *CC = Builder.CreateFMul(RHSr, RHSr);
938 llvm::Value *DD = Builder.CreateFMul(RHSi, RHSi);
939 llvm::Value *CCpDD = Builder.CreateFAdd(CC, DD);
940
941 llvm::Value *BC = Builder.CreateFMul(LHSi, RHSr);
942 llvm::Value *AD = Builder.CreateFMul(LHSr, RHSi);
943 llvm::Value *BCmAD = Builder.CreateFSub(BC, AD);
944
945 DSTr = Builder.CreateFDiv(ACpBD, CCpDD);
946 DSTi = Builder.CreateFDiv(BCmAD, CCpDD);
948}
949
950
952 llvm::Function *Func =
956}
957
958
959
960ComplexPairTy ComplexExprEmitter::EmitRangeReductionDiv(llvm::Value *LHSr,
961 llvm::Value *LHSi,
962 llvm::Value *RHSr,
963 llvm::Value *RHSi) {
964
965
966
967
968 llvm::Value *FAbsRHSr = EmitllvmFAbs(CGF, RHSr);
969 llvm::Value *FAbsRHSi = EmitllvmFAbs(CGF, RHSi);
970
971 llvm::Value *IsR = Builder.CreateFCmpUGT(FAbsRHSr, FAbsRHSi, "abs_cmp");
972
973 llvm::BasicBlock *TrueBB =
975 llvm::BasicBlock *FalseBB =
977 llvm::BasicBlock *ContBB = CGF.createBasicBlock("complex_div");
978 Builder.CreateCondBr(IsR, TrueBB, FalseBB);
979
981
982
983
984
985
986 llvm::Value *DdC = Builder.CreateFDiv(RHSi, RHSr);
987
988 llvm::Value *RD = Builder.CreateFMul(DdC, RHSi);
989 llvm::Value *CpRD = Builder.CreateFAdd(RHSr, RD);
990
991 llvm::Value *T3 = Builder.CreateFMul(LHSi, DdC);
992 llvm::Value *T4 = Builder.CreateFAdd(LHSr, T3);
993 llvm::Value *DSTTr = Builder.CreateFDiv(T4, CpRD);
994
995 llvm::Value *T5 = Builder.CreateFMul(LHSr, DdC);
996 llvm::Value *T6 = Builder.CreateFSub(LHSi, T5);
997 llvm::Value *DSTTi = Builder.CreateFDiv(T6, CpRD);
998 Builder.CreateBr(ContBB);
999
1001
1002
1003
1004
1005
1006 llvm::Value *CdD = Builder.CreateFDiv(RHSr, RHSi);
1007
1008 llvm::Value *RC = Builder.CreateFMul(CdD, RHSr);
1009 llvm::Value *DpRC = Builder.CreateFAdd(RHSi, RC);
1010
1011 llvm::Value *T7 = Builder.CreateFMul(LHSr, CdD);
1012 llvm::Value *T8 = Builder.CreateFAdd(T7, LHSi);
1013 llvm::Value *DSTFr = Builder.CreateFDiv(T8, DpRC);
1014
1015 llvm::Value *T9 = Builder.CreateFMul(LHSi, CdD);
1016 llvm::Value *T10 = Builder.CreateFSub(T9, LHSr);
1017 llvm::Value *DSTFi = Builder.CreateFDiv(T10, DpRC);
1018 Builder.CreateBr(ContBB);
1019
1020
1022 llvm::PHINode *VALr = Builder.CreatePHI(DSTTr->getType(), 2);
1023 VALr->addIncoming(DSTTr, TrueBB);
1024 VALr->addIncoming(DSTFr, FalseBB);
1025 llvm::PHINode *VALi = Builder.CreatePHI(DSTTi->getType(), 2);
1026 VALi->addIncoming(DSTTi, TrueBB);
1027 VALi->addIncoming(DSTFi, FalseBB);
1029}
1030
1031
1032
1033ComplexPairTy ComplexExprEmitter::EmitBinDiv(const BinOpInfo &Op) {
1034 llvm::Value *LHSr = Op.LHS.first, *LHSi = Op.LHS.second;
1035 llvm::Value *RHSr = Op.RHS.first, *RHSi = Op.RHS.second;
1036 llvm::Value *DSTr, *DSTi;
1037 if (LHSr->getType()->isFloatingPointTy()) {
1039 if (!RHSi) {
1040 assert(LHSi && "Can have at most one non-complex operand!");
1041
1042 DSTr = Builder.CreateFDiv(LHSr, RHSr);
1043 DSTi = Builder.CreateFDiv(LHSi, RHSr);
1045 }
1046 llvm::Value *OrigLHSi = LHSi;
1047 if (!LHSi)
1048 LHSi = llvm::Constant::getNullValue(RHSi->getType());
1051 !FPHasBeenPromoted))
1052 return EmitRangeReductionDiv(LHSr, LHSi, RHSr, RHSi);
1055 return EmitAlgebraicDiv(LHSr, LHSi, RHSr, RHSi);
1056
1057
1059 LHSi = OrigLHSi;
1060
1061
1062
1063
1064 BinOpInfo LibCallOp = Op;
1065
1066 if (!LHSi)
1067 LibCallOp.LHS.second = llvm::Constant::getNullValue(LHSr->getType());
1068
1069 switch (LHSr->getType()->getTypeID()) {
1070 default:
1071 llvm_unreachable("Unsupported floating point type!");
1072 case llvm::Type::HalfTyID:
1073 return EmitComplexBinOpLibCall("__divhc3", LibCallOp);
1074 case llvm::Type::FloatTyID:
1075 return EmitComplexBinOpLibCall("__divsc3", LibCallOp);
1076 case llvm::Type::DoubleTyID:
1077 return EmitComplexBinOpLibCall("__divdc3", LibCallOp);
1078 case llvm::Type::PPC_FP128TyID:
1079 return EmitComplexBinOpLibCall("__divtc3", LibCallOp);
1080 case llvm::Type::X86_FP80TyID:
1081 return EmitComplexBinOpLibCall("__divxc3", LibCallOp);
1082 case llvm::Type::FP128TyID:
1083 return EmitComplexBinOpLibCall("__divtc3", LibCallOp);
1084 }
1085 } else {
1086 return EmitAlgebraicDiv(LHSr, LHSi, RHSr, RHSi);
1087 }
1088 } else {
1089 assert(Op.LHS.second && Op.RHS.second &&
1090 "Both operands of integer complex operators must be complex!");
1091
1092 llvm::Value *Tmp1 = Builder.CreateMul(LHSr, RHSr);
1093 llvm::Value *Tmp2 = Builder.CreateMul(LHSi, RHSi);
1094 llvm::Value *Tmp3 = Builder.CreateAdd(Tmp1, Tmp2);
1095
1096 llvm::Value *Tmp4 = Builder.CreateMul(RHSr, RHSr);
1097 llvm::Value *Tmp5 = Builder.CreateMul(RHSi, RHSi);
1098 llvm::Value *Tmp6 = Builder.CreateAdd(Tmp4, Tmp5);
1099
1100 llvm::Value *Tmp7 = Builder.CreateMul(LHSi, RHSr);
1101 llvm::Value *Tmp8 = Builder.CreateMul(LHSr, RHSi);
1102 llvm::Value *Tmp9 = Builder.CreateSub(Tmp7, Tmp8);
1103
1104 if (Op.Ty->castAs()->getElementType()->isUnsignedIntegerType()) {
1105 DSTr = Builder.CreateUDiv(Tmp3, Tmp6);
1106 DSTi = Builder.CreateUDiv(Tmp9, Tmp6);
1107 } else {
1108 DSTr = Builder.CreateSDiv(Tmp3, Tmp6);
1109 DSTi = Builder.CreateSDiv(Tmp9, Tmp6);
1110 }
1111 }
1112
1114}
1115
1118 llvm::Type *ComplexElementTy =
1120 if (result.first)
1121 result.first =
1122 Builder.CreateFPTrunc(result.first, ComplexElementTy, "unpromotion");
1123 if (result.second)
1124 result.second =
1125 Builder.CreateFPTrunc(result.second, ComplexElementTy, "unpromotion");
1126 return result;
1127}
1128
1131 llvm::Type *ComplexElementTy =
1133 if (result.first)
1134 result.first = Builder.CreateFPExt(result.first, ComplexElementTy, "ext");
1135 if (result.second)
1136 result.second = Builder.CreateFPExt(result.second, ComplexElementTy, "ext");
1137
1138 return result;
1139}
1140
1144 if (auto BO = dyn_cast(E)) {
1145 switch (BO->getOpcode()) {
1146#define HANDLE_BINOP(OP) \
1147 case BO_##OP: \
1148 return EmitBin##OP(EmitBinOps(BO, PromotionType));
1153#undef HANDLE_BINOP
1154 default:
1155 break;
1156 }
1157 } else if (auto UO = dyn_cast(E)) {
1158 switch (UO->getOpcode()) {
1159 case UO_Minus:
1160 return VisitMinus(UO, PromotionType);
1161 case UO_Plus:
1162 return VisitPlus(UO, PromotionType);
1163 default:
1164 break;
1165 }
1166 }
1167 auto result = Visit(const_cast<Expr *>(E));
1168 if (!PromotionType.isNull())
1170 else
1171 return result;
1172}
1173
1176 return ComplexExprEmitter(*this).EmitPromoted(E, DstTy);
1177}
1178
1180ComplexExprEmitter::EmitPromotedComplexOperand(const Expr *E,
1181 QualType OverallPromotionType) {
1183 if (!OverallPromotionType.isNull())
1185 else
1186 return Visit(const_cast<Expr *>(E));
1187 } else {
1188 if (!OverallPromotionType.isNull()) {
1192 nullptr);
1193 } else {
1195 }
1196 }
1197}
1198
1199ComplexExprEmitter::BinOpInfo
1200ComplexExprEmitter::EmitBinOps(const BinaryOperator *E,
1201 QualType PromotionType) {
1202 TestAndClearIgnoreReal();
1203 TestAndClearIgnoreImag();
1204 BinOpInfo Ops;
1205
1206 Ops.LHS = EmitPromotedComplexOperand(E->getLHS(), PromotionType);
1207 Ops.RHS = EmitPromotedComplexOperand(E->getRHS(), PromotionType);
1208 if (!PromotionType.isNull())
1209 Ops.Ty = PromotionType;
1210 else
1213 return Ops;
1214}
1215
1216
1217LValue ComplexExprEmitter::
1218EmitCompoundAssignLValue(const CompoundAssignOperator *E,
1221 TestAndClearIgnoreReal();
1222 TestAndClearIgnoreImag();
1224 if (const AtomicType *AT = LHSTy->getAs())
1225 LHSTy = AT->getValueType();
1226
1227 BinOpInfo OpInfo;
1230
1231 const bool IsComplexDivisor = E->getOpcode() == BO_DivAssign &&
1233
1234
1235
1236
1237 QualType PromotionTypeCR;
1238 PromotionTypeCR =
1241 if (PromotionTypeCR.isNull())
1243 OpInfo.Ty = PromotionTypeCR;
1244 QualType ComplexElementTy =
1245 OpInfo.Ty->castAs()->getElementType();
1246 QualType PromotionTypeRHS =
1249
1250
1252 if (!PromotionTypeRHS.isNull())
1255 else {
1258
1260 }
1261 } else {
1262 if (!PromotionTypeRHS.isNull()) {
1265 } else {
1268 OpInfo.RHS = Visit(E->getRHS());
1269 }
1270 }
1271
1273
1274
1275 SourceLocation Loc = E->getExprLoc();
1276 QualType PromotionTypeLHS =
1280 ComplexPairTy LHSVal = EmitLoadOfLValue(LHS, Loc);
1281 if (!PromotionTypeLHS.isNull())
1282 OpInfo.LHS =
1283 EmitComplexToComplexCast(LHSVal, LHSTy, PromotionTypeLHS, Loc);
1284 else
1285 OpInfo.LHS = EmitComplexToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc);
1286 } else {
1288
1289
1291 QualType PromotedComplexElementTy;
1292 if (!PromotionTypeLHS.isNull()) {
1293 PromotedComplexElementTy =
1296 PromotionTypeLHS))
1298 PromotedComplexElementTy, Loc);
1299 } else {
1301 LHSVal =
1303 }
1305 } else {
1306 OpInfo.LHS = EmitScalarToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc);
1307 }
1308 }
1309
1310
1312
1313
1316 EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy, Loc);
1317 EmitStoreOfComplex(ResVal, LHS, false);
1319 } else {
1320 llvm::Value *ResVal =
1324 }
1325
1326 return LHS;
1327}
1328
1329
1331EmitCompoundAssign(const CompoundAssignOperator *E,
1334 LValue LV = EmitCompoundAssignLValue(E, Func, Val);
1335
1336
1339
1340
1341 if (!LV.isVolatileQualified())
1343
1344 return EmitLoadOfLValue(LV, E->getExprLoc());
1345}
1346
1347LValue ComplexExprEmitter::EmitBinAssignLValue(const BinaryOperator *E,
1351 "Invalid assignment");
1352 TestAndClearIgnoreReal();
1353 TestAndClearIgnoreImag();
1354
1355
1356 Val = Visit(E->getRHS());
1357
1358
1360
1361
1362 EmitStoreOfComplex(Val, LHS, false);
1363
1364 return LHS;
1365}
1366
1367ComplexPairTy ComplexExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1370 LValue LV = EmitBinAssignLValue(E, Val);
1371
1372
1374 return Val;
1375
1376
1377 if (!LV.isVolatileQualified())
1378 return Val;
1379
1380 return EmitLoadOfLValue(LV, E->getExprLoc());
1381}
1382
1383ComplexPairTy ComplexExprEmitter::VisitBinComma(const BinaryOperator *E) {
1385 return Visit(E->getRHS());
1386}
1387
1389VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
1390 TestAndClearIgnoreReal();
1391 TestAndClearIgnoreImag();
1392 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1393 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
1394 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
1395
1396
1398
1399
1403
1404 eval.begin(CGF);
1408 else
1410
1412 LHSBlock = Builder.GetInsertBlock();
1414 eval.end(CGF);
1415
1416 eval.begin(CGF);
1421 RHSBlock = Builder.GetInsertBlock();
1425 eval.end(CGF);
1426
1427
1428 llvm::PHINode *RealPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.r");
1429 RealPN->addIncoming(LHS.first, LHSBlock);
1430 RealPN->addIncoming(RHS.first, RHSBlock);
1431
1432
1433 llvm::PHINode *ImagPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.i");
1434 ImagPN->addIncoming(LHS.second, LHSBlock);
1435 ImagPN->addIncoming(RHS.second, RHSBlock);
1436
1438}
1439
1440ComplexPairTy ComplexExprEmitter::VisitChooseExpr(ChooseExpr *E) {
1442}
1443
1444ComplexPairTy ComplexExprEmitter::VisitInitListExpr(InitListExpr *E) {
1445 bool Ignore = TestAndClearIgnoreReal();
1446 (void)Ignore;
1447 assert (Ignore == false && "init list ignored");
1448 Ignore = TestAndClearIgnoreImag();
1449 (void)Ignore;
1450 assert (Ignore == false && "init list ignored");
1451
1457 return Visit(E->getInit(0));
1458 }
1459
1460
1461 assert(E->getNumInits() == 0 && "Unexpected number of inits");
1462 QualType Ty = E->getType()->castAs()->getElementType();
1464 llvm::Value* zeroConstant = llvm::Constant::getNullValue(LTy);
1465 return ComplexPairTy(zeroConstant, zeroConstant);
1466}
1467
1468ComplexPairTy ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *E) {
1471
1472 if (!ArgValue.isValid()) {
1474 llvm::Type *EltTy =
1476 llvm::Value *U = llvm::PoisonValue::get(EltTy);
1478 }
1479
1481}
1482
1483
1484
1485
1486
1487
1488
1490 bool IgnoreImag) {
1492 "Invalid complex expression to emit");
1493
1494 return ComplexExprEmitter(*this, IgnoreReal, IgnoreImag)
1495 .Visit(const_cast<Expr *>(E));
1496}
1497
1499 bool isInit) {
1501 "Invalid complex expression to emit");
1502 ComplexExprEmitter Emitter(*this);
1504 Emitter.EmitStoreOfComplex(Val, dest, isInit);
1505}
1506
1507
1509 bool isInit) {
1510 ComplexExprEmitter(*this).EmitStoreOfComplex(V, dest, isInit);
1511}
1512
1513
1516 return ComplexExprEmitter(*this).EmitLoadOfLValue(src, loc);
1517}
1518
1520 assert(E->getOpcode() == BO_Assign);
1522 LValue LVal = ComplexExprEmitter(*this).EmitBinAssignLValue(E, Val);
1524 CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
1526 return LVal;
1527}
1528
1530 const ComplexExprEmitter::BinOpInfo &);
1531
1533 switch (Op) {
1534 case BO_MulAssign: return &ComplexExprEmitter::EmitBinMul;
1535 case BO_DivAssign: return &ComplexExprEmitter::EmitBinDiv;
1536 case BO_SubAssign: return &ComplexExprEmitter::EmitBinSub;
1537 case BO_AddAssign: return &ComplexExprEmitter::EmitBinAdd;
1538 default:
1539 llvm_unreachable("unexpected complex compound assignment");
1540 }
1541}
1542
1548 return ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val);
1549}
1550
1553 llvm::Value *&Result) {
1554
1555
1558 LValue Ret = ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val);
1560 return Ret;
1561}
static const ComplexType * getComplexType(QualType type)
Return the complex type that we are meant to emit.
Definition CGExprComplex.cpp:37
CodeGenFunction::ComplexPairTy ComplexPairTy
Definition CGExprComplex.cpp:34
static llvm::Value * EmitllvmFAbs(CodeGenFunction &CGF, llvm::Value *Value)
Definition CGExprComplex.cpp:951
static StringRef getComplexMultiplyLibCallName(llvm::Type *Ty)
Lookup the libcall name for a given floating point type complex multiply.
Definition CGExprComplex.cpp:802
static CompoundFunc getComplexOp(BinaryOperatorKind op)
static const ComplexType * getComplexType(QualType type)
Return the complex type that we are meant to emit.
mlir::Value(ComplexExprEmitter::*)(const ComplexExprEmitter::BinOpInfo &) CompoundFunc
const llvm::fltSemantics & getFloatTypeSemantics(QualType T) const
Return the APFloat 'semantics' for the specified scalar floating point type.
const QualType GetHigherPrecisionFPType(QualType ElementType) const
QualType getFunctionType(QualType ResultTy, ArrayRef< QualType > Args, const FunctionProtoType::ExtProtoInfo &EPI) const
Return a normal function type with a typed argument list.
QualType getComplexType(QualType T) const
Return the uniqued reference to the type for a complex number with the specified element type.
const TargetInfo & getTargetInfo() const
static bool hasSameUnqualifiedType(QualType T1, QualType T2)
Determine whether the given types are equivalent after cvr-qualifiers have been removed.
Expr * getCond() const
getCond - Return the expression representing the condition for the ?
Expr * getTrueExpr() const
getTrueExpr - Return the subexpression representing the value of the expression if the condition eval...
Expr * getFalseExpr() const
getFalseExpr - Return the subexpression representing the value of the expression if the condition eva...
A builtin binary operation expression such as "x + y" or "x <= y".
FPOptionsOverride getStoredFPFeaturesOrDefault() const
Get the store FPOptionsOverride or default if not stored.
SourceLocation getExprLoc() const
FPOptions getFPFeaturesInEffect(const LangOptions &LO) const
Get the FP features status of this operator.
Expr * getExpr()
Get the initialization expression that will be used.
A rewritten comparison expression that was originally written using operator syntax.
Expr * getSemanticForm()
Get an equivalent semantic form for this expression.
QualType getCallReturnType(const ASTContext &Ctx) const
getCallReturnType - Get the return type of the call expr.
CastKind getCastKind() const
bool changesVolatileQualification() const
Return.
Expr * getChosenSubExpr() const
getChosenSubExpr - Return the subexpression chosen according to the condition.
Like RawAddress, an abstract representation of an aligned address, but the pointer contained in this ...
llvm::StringRef getName() const
Return the IR name of the pointer value.
A scoped helper to set the current source atom group for CGDebugInfo::addInstToCurrentSourceAtom.
All available information about a concrete callee.
static CGCallee forDirect(llvm::Constant *functionPtr, const CGCalleeInfo &abstractInfo=CGCalleeInfo())
CGFunctionInfo - Class to encapsulate the information about a function definition.
CallArgList - Type for representing both the value and type of arguments in a call.
void add(RValue rvalue, QualType type)
An object to manage conditionally-evaluated expressions.
LValue getReferenceLValue(CodeGenFunction &CGF, const Expr *RefExpr) const
llvm::Constant * getValue() const
An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
An RAII object to record that we're evaluating a statement expression.
CodeGenFunction - This class organizes the per-function state that is used while generating LLVM code...
void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, llvm::BasicBlock *FalseBlock, uint64_t TrueCount, Stmt::Likelihood LH=Stmt::LH_None, const Expr *ConditionalOp=nullptr, const VarDecl *ConditionalDecl=nullptr)
EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g.
RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, ReturnValueSlot Return=ReturnValueSlot())
ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, bool isInc, bool isPre)
void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit)
EmitComplexExprIntoLValue - Emit the given expression of complex type and place its result into the s...
Definition CGExprComplex.cpp:1498
llvm::Type * ConvertType(QualType T)
ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc)
EmitLoadOfComplex - Load a complex number from the specified l-value.
Definition CGExprComplex.cpp:1514
RValue EmitVAArg(VAArgExpr *VE, Address &VAListAddr, AggValueSlot Slot=AggValueSlot::ignored())
Generate code to get an argument from the passed in pointer and update it accordingly.
RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, AggValueSlot slot=AggValueSlot::ignored())
llvm::BasicBlock * createBasicBlock(const Twine &name="", llvm::Function *parent=nullptr, llvm::BasicBlock *before=nullptr)
createBasicBlock - Create an LLVM basic block.
void addInstToCurrentSourceAtom(llvm::Instruction *KeyInstruction, llvm::Value *Backup)
See CGDebugInfo::addInstToCurrentSourceAtom.
llvm::Value * EmitPromotedScalarExpr(const Expr *E, QualType PromotionType)
const LangOptions & getLangOpts() const
LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E)
Definition CGExprComplex.cpp:1544
ComplexPairTy EmitPromotedComplexExpr(const Expr *E, QualType PromotionType)
Definition CGExprComplex.cpp:1174
LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, llvm::Value *&Result)
Definition CGExprComplex.cpp:1552
void EmitIgnoredExpr(const Expr *E)
EmitIgnoredExpr - Emit an expression in a context which ignores the result.
RValue EmitCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue=ReturnValueSlot(), llvm::CallBase **CallOrInvoke=nullptr)
RValue EmitLoadOfLValue(LValue V, SourceLocation Loc)
EmitLoadOfLValue - Given an expression that represents a value lvalue, this method emits the address ...
llvm::Value * EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, QualType DstTy, SourceLocation Loc)
Emit a conversion from the specified complex type to the specified destination type,...
Address emitAddrOfImagComponent(Address complex, QualType complexType)
Definition CGExprComplex.cpp:425
RValue EmitCoyieldExpr(const CoyieldExpr &E, AggValueSlot aggSlot=AggValueSlot::ignored(), bool ignoreResult=false)
RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e)
Given an opaque value expression, return its RValue mapping if it exists, otherwise create one.
RValue EmitAtomicLoad(LValue LV, SourceLocation SL, AggValueSlot Slot=AggValueSlot::ignored())
CGDebugInfo * getDebugInfo()
LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e)
Given an opaque value expression, return its LValue mapping if it exists, otherwise create one.
ComplexPairTy EmitComplexExpr(const Expr *E, bool IgnoreReal=false, bool IgnoreImag=false)
EmitComplexExpr - Emit the computation of the specified expression of complex type,...
Definition CGExprComplex.cpp:1489
RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, ReturnValueSlot ReturnValue, const CallArgList &Args, llvm::CallBase **CallOrInvoke, bool IsMustTail, SourceLocation Loc, bool IsVirtualFunctionPointerThunk=false)
EmitCall - Generate a call of the given function, expecting the given result type,...
void incrementProfileCounter(const Stmt *S, llvm::Value *StepV=nullptr)
Increment the profiler's counter for the given statement by StepV.
ASTContext & getContext() const
void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit)
EmitStoreOfComplex - Store a complex number into the specified l-value.
Definition CGExprComplex.cpp:1508
void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false)
EmitStoreThroughLValue - Store the specified rvalue into the specified lvalue, where both are guarant...
Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast=false, AggValueSlot AVS=AggValueSlot::ignored())
EmitCompoundStmt - Emit a compound statement {..} node.
LValue EmitComplexAssignmentLValue(const BinaryOperator *E)
Emit an l-value for an assignment (simple or compound) of complex type.
Definition CGExprComplex.cpp:1519
llvm::Type * ConvertTypeForMem(QualType T)
RValue EmitAtomicExpr(AtomicExpr *E)
RValue EmitCoawaitExpr(const CoawaitExpr &E, AggValueSlot aggSlot=AggValueSlot::ignored(), bool ignoreResult=false)
void EmitBranch(llvm::BasicBlock *Block)
EmitBranch - Emit a branch to the specified basic block from the current insert block,...
bool LValueIsSuitableForInlineAtomic(LValue Src)
An LValue is a candidate for having its loads and stores be made atomic if we are operating under /vo...
Address emitAddrOfRealComponent(Address complex, QualType complexType)
Definition CGExprComplex.cpp:420
llvm::Value * EmitScalarExpr(const Expr *E, bool IgnoreResultAssign=false)
EmitScalarExpr - Emit the computation of the specified expression of LLVM scalar type,...
ComplexPairTy EmitUnPromotedValue(ComplexPairTy result, QualType PromotionType)
Definition CGExprComplex.cpp:1116
LValue MakeAddrLValue(Address Addr, QualType T, AlignmentSource Source=AlignmentSource::Type)
void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit)
uint64_t getProfileCount(const Stmt *S)
Get the profiler's count for the given statement.
void ErrorUnsupported(const Stmt *S, const char *Type)
ErrorUnsupported - Print out an error that codegen doesn't support the specified stmt yet.
std::pair< llvm::Value *, llvm::Value * > ComplexPairTy
ConstantEmission tryEmitAsConstant(const DeclRefExpr *RefExpr)
Try to emit a reference to the given value without producing it as an l-value.
LValue EmitLValue(const Expr *E, KnownNonNull_t IsKnownNonNull=NotKnownNonNull)
EmitLValue - Emit code to compute a designator that specifies the location of the expression.
llvm::LLVMContext & getLLVMContext()
ComplexPairTy EmitPromotedValue(ComplexPairTy result, QualType PromotionType)
Definition CGExprComplex.cpp:1129
llvm::Value * EmitScalarConversion(llvm::Value *Src, QualType SrcTy, QualType DstTy, SourceLocation Loc)
Emit a conversion from the specified type to the specified destination type, both of which are LLVM s...
void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false)
EmitBlock - Emit the given block.
void EmitExplicitCastExprType(const ExplicitCastExpr *E, CodeGenFunction *CGF=nullptr)
Emit type info if type of an expression is a variably modified type.
llvm::FunctionCallee CreateRuntimeFunction(llvm::FunctionType *Ty, StringRef Name, llvm::AttributeList ExtraAttrs=llvm::AttributeList(), bool Local=false, bool AssumeConvergent=false)
Create or return a runtime function declaration with the specified type and name.
CodeGenTypes & getTypes()
llvm::Function * getIntrinsic(unsigned IID, ArrayRef< llvm::Type * > Tys={})
llvm::FunctionType * GetFunctionType(const CGFunctionInfo &Info)
GetFunctionType - Get the LLVM function type for.
const CGFunctionInfo & arrangeFreeFunctionCall(const CallArgList &Args, const FunctionType *Ty, bool ChainCall)
Figure out the rules for calling a function with the given formal type using the given arguments.
LValue - This represents an lvalue references.
bool isVolatileQualified() const
Address getAddress() const
RValue - This trivial value class is used to represent the result of an expression that is evaluated.
static RValue get(llvm::Value *V)
static RValue getComplex(llvm::Value *V1, llvm::Value *V2)
llvm::Value * getScalarVal() const
getScalarVal() - Return the Value* of this scalar value.
std::pair< llvm::Value *, llvm::Value * > getComplexVal() const
getComplexVal - Return the real/imag components of this complex value.
ReturnValueSlot - Contains the address where the return value of a function can be stored,...
Complex values, per C99 6.2.5p11.
QualType getElementType() const
CompoundAssignOperator - For compound assignments (e.g.
QualType getComputationLHSType() const
QualType getComputationResultType() const
This represents one expression.
Expr * IgnoreParens() LLVM_READONLY
Skip past any parentheses which might surround this expression until reaching a fixed point.
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
const Expr * getSubExpr() const
const Expr * getSubExpr() const
unsigned getNumInits() const
const Expr * getInit(unsigned Init) const
@ CX_Full
Implementation of complex division and multiplication using a call to runtime library functions(gener...
@ CX_Basic
Implementation of complex division and multiplication using algebraic formulas at source precision.
@ CX_Promoted
Implementation of complex division using algebraic formulas at higher precision.
@ CX_Improved
Implementation of complex division offering an improved handling for overflow in intermediate calcula...
SourceLocation getExprLoc() const LLVM_READONLY
Expr * getSelectedExpr() const
const Expr * getSubExpr() const
A (possibly-)qualified type.
bool isNull() const
Return true if this QualType doesn't point to a type yet.
const Type * getTypePtr() const
Retrieves a pointer to the underlying (unqualified) type.
QualType getCanonicalType() const
QualType getUnqualifiedType() const
Retrieve the unqualified variant of the given type, removing as little sugar as possible.
bool UseExcessPrecision(const ASTContext &Ctx)
Encodes a location in the source.
CompoundStmt * getSubStmt()
StmtVisitor - This class implements a simple visitor for Stmt subclasses.
void dump() const
Dumps the specified AST fragment and all subtrees to llvm::errs().
Expr * getReplacement() const
virtual bool hasLongDoubleType() const
Determine whether the long double type is supported on this target.
const T * castAs() const
Member-template castAs.
bool isReferenceType() const
bool isAnyComplexType() const
bool isAtomicType() const
bool isRealFloatingType() const
Floating point categories.
bool isFloatingType() const
const T * getAs() const
Member-template getAs'.
Expr * getSubExpr() const
FPOptionsOverride getStoredFPFeaturesOrDefault() const
Get the store FPOptionsOverride or default if not stored.
const internal::VariadicAllOfMatcher< Type > type
Matches Types in the clang AST.
const AstTypeMatcher< ComplexType > complexType
bool Null(InterpState &S, CodePtr OpPC, uint64_t Value, const Descriptor *Desc)
bool GE(InterpState &S, CodePtr OpPC)
The JSON file list parser is used to communicate input to InstallAPI.
@ Result
The result type of a method or function.
CastKind
CastKind - The kind of operation required for a conversion.
U cast(CodeGen::Address addr)
@ EST_BasicNoexcept
noexcept
Diagnostic wrappers for TextAPI types for error reporting.
cl::opt< bool > EnableSingleByteCoverage
Definition CGExprComplex.cpp:31
llvm::CallingConv::ID getRuntimeCC() const
static TBAAAccessInfo getMayAliasInfo()
ExtProtoInfo withExceptionSpec(const ExceptionSpecInfo &ESI)