clang: lib/Sema/SemaConcept.cpp Source File (original) (raw)

1

2

3

4

5

6

7

8

9

10

11

12

27#include "llvm/ADT/DenseMap.h"

28#include "llvm/ADT/PointerUnion.h"

29#include "llvm/ADT/StringExtras.h"

30#include

31

32using namespace clang;

33using namespace sema;

34

35namespace {

36class LogicalBinOp {

39 const Expr *LHS = nullptr;

40 const Expr *RHS = nullptr;

41

42public:

43 LogicalBinOp(const Expr *E) {

44 if (auto *BO = dyn_cast(E)) {

46 LHS = BO->getLHS();

47 RHS = BO->getRHS();

48 Loc = BO->getExprLoc();

49 } else if (auto *OO = dyn_cast(E)) {

50

51 if (OO->getNumArgs() == 2) {

52 Op = OO->getOperator();

53 LHS = OO->getArg(0);

54 RHS = OO->getArg(1);

55 Loc = OO->getOperatorLoc();

56 }

57 }

58 }

59

60 bool isAnd() const { return Op == OO_AmpAmp; }

61 bool isOr() const { return Op == OO_PipePipe; }

62 explicit operator bool() const { return isAnd() || isOr(); }

63

64 const Expr *getLHS() const { return LHS; }

65 const Expr *getRHS() const { return RHS; }

67

69 return recreateBinOp(SemaRef, LHS, const_cast<Expr *>(getRHS()));

70 }

71

74 assert((isAnd() || isOr()) && "Not the right kind of op?");

75 assert((!LHS.isInvalid() && !RHS.isInvalid()) && "not good expressions?");

76

79

80

81

86 }

87};

88}

89

91 Token NextToken, bool *PossibleNonPrimary,

92 bool IsTrailingRequiresClause) {

93

94

95

97

98 if (LogicalBinOp BO = ConstraintExpression) {

100 PossibleNonPrimary) &&

102 PossibleNonPrimary);

103 } else if (auto *C = dyn_cast(ConstraintExpression))

105 PossibleNonPrimary);

106

108

109 auto CheckForNonPrimary = [&] {

110 if (!PossibleNonPrimary)

111 return;

112

113 *PossibleNonPrimary =

114

115

116

117

118

119

120

121

122

123

124 (NextToken.is(tok::l_paren) &&

125 (IsTrailingRequiresClause ||

127 isa(ConstraintExpression) &&

128 !dyn_cast_if_present(getCurFunction())) ||

131

132

133

134

135

137 true,

139 };

140

141

143 CheckForNonPrimary();

144 return true;

145 }

146

149 diag::err_non_bool_atomic_constraint) << Type

151 CheckForNonPrimary();

152 return false;

153 }

154

155 if (PossibleNonPrimary)

156 *PossibleNonPrimary = false;

157 return true;

158}

159

160namespace {

161struct SatisfactionStackRAII {

162 Sema &SemaRef;

163 bool Inserted = false;

164 SatisfactionStackRAII(Sema &SemaRef, const NamedDecl *ND,

165 const llvm::FoldingSetNodeID &FSNID)

166 : SemaRef(SemaRef) {

167 if (ND) {

169 Inserted = true;

170 }

171 }

172 ~SatisfactionStackRAII() {

173 if (Inserted)

175 }

176};

177}

178

179template

183 const ConstraintEvaluator &Evaluator);

184

185template

190 const ConstraintEvaluator &Evaluator) {

191 size_t EffectiveDetailEndIndex = Satisfaction.Details.size();

192

195

198

199 bool IsLHSSatisfied = Satisfaction.IsSatisfied;

200

201 if (Op == clang::OO_PipePipe && IsLHSSatisfied)

202

203

204

205

206

207

208

209 return LHSRes;

210

211 if (Op == clang::OO_AmpAmp && !IsLHSSatisfied)

212

213

214

215

216

217

218

219 return LHSRes;

220

225

226 bool IsRHSSatisfied = Satisfaction.IsSatisfied;

227

228

229

230

231

232

233

234

235 if (Op == clang::OO_PipePipe && IsRHSSatisfied) {

236 auto EffectiveDetailEnd = Satisfaction.Details.begin();

237 std::advance(EffectiveDetailEnd, EffectiveDetailEndIndex);

238 Satisfaction.Details.erase(EffectiveDetailEnd, Satisfaction.Details.end());

239 }

240

243

248}

249

250template

254 const ConstraintEvaluator &Evaluator) {

255 bool Conjunction = FE->getOperator() == BinaryOperatorKind::BO_LAnd;

256 size_t EffectiveDetailEndIndex = Satisfaction.Details.size();

257

261 Evaluator);

262 if (Out.isInvalid())

264

265

266

267

268

269 if (Conjunction != Satisfaction.IsSatisfied)

270 return Out;

271 }

272 std::optional NumExpansions =

273 Evaluator.EvaluateFoldExpandedConstraintSize(FE);

274 if (!NumExpansions)

276 for (unsigned I = 0; I < *NumExpansions; I++) {

279 Satisfaction, Evaluator);

282 bool IsRHSSatisfied = Satisfaction.IsSatisfied;

283 if (!Conjunction && IsRHSSatisfied) {

284 auto EffectiveDetailEnd = Satisfaction.Details.begin();

285 std::advance(EffectiveDetailEnd, EffectiveDetailEndIndex);

286 Satisfaction.Details.erase(EffectiveDetailEnd,

287 Satisfaction.Details.end());

288 }

289 if (Out.isUnset())

290 Out = Res;

291 else if (!Res.isUnset()) {

295 }

296 if (Conjunction != IsRHSSatisfied)

297 return Out;

298 }

299

302 Satisfaction, Evaluator);

303 if (Out.isInvalid())

305

306 if (Out.isUnset())

307 Out = Res;

308 else if (!Res.isUnset()) {

312 }

313 }

314

315 if (Out.isUnset()) {

318 }

319 return Out;

320}

321

322template

326 const ConstraintEvaluator &Evaluator) {

328

329 if (LogicalBinOp BO = ConstraintExpr)

331 S, BO.getLHS(), BO.getOp(), BO.getRHS(), Satisfaction, Evaluator);

332

333 if (auto *C = dyn_cast(ConstraintExpr)) {

334

335

337 Evaluator);

338 }

339

340 if (auto *FE = dyn_cast(ConstraintExpr);

342 (FE->getOperator() == BinaryOperatorKind::BO_LAnd ||

343 FE->getOperator() == BinaryOperatorKind::BO_LOr)) {

345 }

346

347

349 Evaluator.EvaluateAtomicConstraint(ConstraintExpr);

350

351 if (SubstitutedAtomicExpr.isInvalid())

353

354 if (!SubstitutedAtomicExpr.isUsable())

355

357

358

359

360

361

362

366

369 DiagString = ": ";

371 unsigned MessageSize = DiagString.size();

372 char *Mem = new (S.Context) char[MessageSize];

373 memcpy(Mem, DiagString.c_str(), MessageSize);

374 Satisfaction.Details.emplace_back(

376 SubstitutedAtomicExpr.get()->getBeginLoc(),

377 StringRef(Mem, MessageSize)});

378 return SubstitutedAtomicExpr;

379 }

380

385 EvalResult.Diag = &EvaluationDiags;

388 !EvaluationDiags.empty()) {

389

390

392 diag::err_non_constant_constraint_expression)

395 S.Diag(PDiag.first, PDiag.second);

397 }

398

399 assert(EvalResult.Val.isInt() &&

400 "evaluating bool expression didn't produce int");

403 Satisfaction.Details.emplace_back(SubstitutedAtomicExpr.get());

404

405 return SubstitutedAtomicExpr;

406}

407

408static bool

413 for (const auto &List : MLTAL)

414 for (const auto &TemplateArg : List.Args)

416

417

418

419

420

421

422

424 S.Diag(E->getExprLoc(), diag::err_constraint_depends_on_self)

426 return true;

427 }

428

429 return false;

430}

431

436

437 struct ConstraintEvaluator {

443

446 S, Sema::ExpressionEvaluationContext::ConstantEvaluated,

448

449

451 {

456 const_cast<NamedDecl *>(Template), Info,

460

461 llvm::FoldingSetNodeID ID;

462 if (Template &&

467 }

468

469 SatisfactionStackRAII StackRAII(S, Template, ID);

470

471

473 SubstitutedExpression =

475

477

478

479

481

482

484

488

489

490

491

492

493

495 DiagString = ": ";

496 SubstDiag.second.EmitToString(S.getDiagnostics(), DiagString);

497 unsigned MessageSize = DiagString.size();

498 char *Mem = new (S.Context) char[MessageSize];

499 memcpy(Mem, DiagString.c_str(), MessageSize);

500 Satisfaction.Details.emplace_back(

502 SubstDiag.first, StringRef(Mem, MessageSize)});

505 }

506 }

507

510

511

512

513

514

515

516

517

518

519

520

521 if (!SubstitutedExpression.get()->isPRValue())

524 CK_LValueToRValue, SubstitutedExpression.get(),

526

527 return SubstitutedExpression;

528 }

529

530 std::optional

531 EvaluateFoldExpandedConstraintSize(const CXXFoldExpr *FE) const {

532

533

535

537

540 assert(!Unexpanded.empty() && "Pack expansion without parameter packs?");

541 bool Expand = true;

542 bool RetainExpansion = false;

543 std::optional OrigNumExpansions = FE->getNumExpansions(),

544 NumExpansions = OrigNumExpansions;

547 MLTAL, Expand, RetainExpansion, NumExpansions) ||

548 !Expand || RetainExpansion)

549 return std::nullopt;

550

551 if (NumExpansions && S.getLangOpts().BracketDepth < NumExpansions) {

553 clang::diag::err_fold_expression_limit_exceeded)

554 << *NumExpansions << S.getLangOpts().BracketDepth

557 return std::nullopt;

558 }

559 return NumExpansions;

560 }

561 };

562

564 S, ConstraintExpr, Satisfaction,

565 ConstraintEvaluator{S, Template, TemplateNameLoc, MLTAL, Satisfaction});

566}

567

573 if (ConstraintExprs.empty()) {

575 return false;

576 }

577

579

581 return false;

582 }

583

590 const_cast<NamedDecl *>(Template), TemplateArgs, TemplateIDRange);

592 return true;

593

594 for (const Expr *ConstraintExpr : ConstraintExprs) {

596 S, Template, TemplateIDRange.getBegin(), TemplateArgsLists,

597 ConstraintExpr, Satisfaction);

599 return true;

600

601 Converted.push_back(Res.get());

603

604

605 Converted.append(ConstraintExprs.size() - Converted.size(), nullptr);

606

607

608

609

610 return false;

611 }

612 }

613 return false;

614}

615

621 if (ConstraintExprs.empty()) {

623 return false;

624 }

625 if (!Template) {

626 return ::CheckConstraintSatisfaction(

627 *this, nullptr, ConstraintExprs, ConvertedConstraints,

628 TemplateArgsLists, TemplateIDRange, OutSatisfaction);

629 }

630

631

634 return true;

635 }

636

637

638

639

640

642 for (auto List : TemplateArgsLists)

643 FlattenedArgs.insert(FlattenedArgs.end(), List.Args.begin(),

644 List.Args.end());

645

646 llvm::FoldingSetNodeID ID;

648 void *InsertPos;

649 if (auto *Cached = SatisfactionCache.FindNodeOrInsertPos(ID, InsertPos)) {

650 OutSatisfaction = *Cached;

651 return false;

652 }

653

654 auto Satisfaction =

655 std::make_unique(Template, FlattenedArgs);

657 ConvertedConstraints, TemplateArgsLists,

658 TemplateIDRange, *Satisfaction)) {

659 OutSatisfaction = *Satisfaction;

660 return true;

661 }

662

663 if (auto *Cached = SatisfactionCache.FindNodeOrInsertPos(ID, InsertPos)) {

664

665

666

667

668

669

670

671

672 OutSatisfaction = *Cached;

673 return false;

674 }

675

676

677 OutSatisfaction = *Satisfaction;

678

679

680

681 SatisfactionCache.InsertNode(Satisfaction.release());

682 return false;

683}

684

687

688 struct ConstraintEvaluator {

692 }

693

694 std::optional

695 EvaluateFoldExpandedConstraintSize(const CXXFoldExpr *FE) const {

696 return 0;

697 }

698 };

699

701 ConstraintEvaluator{*this})

703}

704

705bool Sema::addInstantiatedCapturesToScope(

709 const auto *LambdaClass = cast(Function)->getParent();

710 const auto *LambdaPattern = cast(PatternDecl)->getParent();

711

712 unsigned Instantiated = 0;

713

714 auto AddSingleCapture = [&](const ValueDecl *CapturedPattern,

715 unsigned Index) {

716 ValueDecl *CapturedVar = LambdaClass->getCapture(Index)->getCapturedVar();

718 Scope.InstantiatedLocal(CapturedPattern, CapturedVar);

719 };

720

721 for (const LambdaCapture &CapturePattern : LambdaPattern->captures()) {

722 if (!CapturePattern.capturesVariable()) {

723 Instantiated++;

724 continue;

725 }

726 ValueDecl *CapturedPattern = CapturePattern.getCapturedVar();

727

729 Instantiated++;

730 continue;

731 }

732

734 AddSingleCapture(CapturedPattern, Instantiated++);

735 } else {

736 Scope.MakeInstantiatedLocalArgPack(CapturedPattern);

739 dyn_cast(CapturedPattern)->getInit(), Unexpanded);

740 auto NumArgumentsInExpansion =

742 if (!NumArgumentsInExpansion)

743 continue;

744 for (unsigned Arg = 0; Arg < *NumArgumentsInExpansion; ++Arg)

745 AddSingleCapture(CapturedPattern, Instantiated++);

746 }

747 }

748 return false;

749}

750

751bool Sema::SetupConstraintScope(

757 InstantiatingTemplate Inst(

762 if (Inst.isInvalid())

763 return true;

764

765

766

767

768

769

772 false);

773 if (addInstantiatedParametersToScope(

775 return true;

776 }

777

778

779

780

781

782

783

786 while (FromMemTempl->getInstantiatedFromMemberTemplate())

787 FromMemTempl = FromMemTempl->getInstantiatedFromMemberTemplate();

788 if (addInstantiatedParametersToScope(FD, FromMemTempl->getTemplatedDecl(),

790 return true;

791 }

792

793 return false;

794 }

795

802

803 InstantiatingTemplate Inst(

808 if (Inst.isInvalid())

809 return true;

810

811

812

813 if (addInstantiatedParametersToScope(FD, InstantiatedFrom, Scope, MLTAL))

814 return true;

815 }

816

817 return false;

818}

819

820

821

822std::optional

823Sema::SetupConstraintCheckingTemplateArgumentsAndScope(

827

828

829

830

831 MLTAL =

833 false, std::nullopt,

834 true,

835 nullptr,

836 true);

837 if (SetupConstraintScope(FD, TemplateArgs, MLTAL, Scope))

838 return std::nullopt;

839

840 return MLTAL;

841}

842

846 bool ForOverloadResolution) {

847

848

849

850

855 return false;

856 }

857

858

859

860

861

862

863

864

865 if (const auto *MD = dyn_cast(FD);

868 Satisfaction, UsageLoc,

869 true);

870

872

876 else

878 }

879

880 ContextRAII SavedContext{*this, CtxToSave};

882 std::optional MLTAL =

883 SetupConstraintCheckingTemplateArgumentsAndScope(

885

886 if (!MLTAL)

887 return true;

888

891 if (auto *Method = dyn_cast(FD)) {

892 ThisQuals = Method->getMethodQualifiers();

894 }

896

899 ForOverloadResolution);

900

904 Satisfaction);

905}

906

907

908

909

910

911static unsigned

913 bool SkipForSpecialization = false) {

916 std::nullopt,

917 true,

918 nullptr,

919 true, SkipForSpecialization);

921}

922

923namespace {

924 class AdjustConstraintDepth : public TreeTransform {

925 unsigned TemplateDepth = 0;

926 public:

928 AdjustConstraintDepth(Sema &SemaRef, unsigned TemplateDepth)

929 : inherited(SemaRef), TemplateDepth(TemplateDepth) {}

930

931 using inherited::TransformTemplateTypeParmType;

935

938 NewTTPDecl = cast_or_null(

939 TransformDecl(TL.getNameLoc(), OldTTPDecl));

940

941 QualType Result = getSema().Context.getTemplateTypeParmType(

942 T->getDepth() + TemplateDepth, T->getIndex(), T->isParameterPack(),

943 NewTTPDecl);

946 return Result;

947 }

948 };

949}

950

953 const Expr *ConstrExpr) {

956 std::nullopt,

957 true,

958 nullptr, true,

959 false);

960

962 return ConstrExpr;

963

965

971 return nullptr;

972

973

974

975

976

977 std::optional ScopeForParameters;

980 ScopeForParameters.emplace(S, true);

983 if (!PVD->isParameterPack()) {

984 ScopeForParameters->InstantiatedLocal(PVD, PVD);

985 continue;

986 }

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003 ScopeForParameters->MakeInstantiatedLocalArgPack(PVD);

1004 ScopeForParameters->InstantiatedLocalPackArg(PVD, PVD);

1005 }

1006 }

1007

1008 std::optionalSema::CXXThisScopeRAII ThisScope;

1009

1010

1011

1012

1013

1014

1015

1016

1017 std::optionalSema::ContextRAII ContextScope;

1019 if (!DeclInfo.getDecl())

1024 }();

1025 if (auto *RD = dyn_cast(DC)) {

1027 ContextScope.emplace(S, const_cast<DeclContext *>(cast(RD)),

1028 false);

1029 }

1031 const_cast<clang::Expr *>(ConstrExpr), MLTAL);

1033 return nullptr;

1034 return SubstConstr.get();

1035}

1036

1038 const Expr *OldConstr,

1040 const Expr *NewConstr) {

1041 if (OldConstr == NewConstr)

1042 return true;

1043

1046 if (const Expr *SubstConstr =

1048 OldConstr))

1049 OldConstr = SubstConstr;

1050 else

1051 return false;

1052 if (const Expr *SubstConstr =

1054 NewConstr))

1055 NewConstr = SubstConstr;

1056 else

1057 return false;

1058 }

1059

1060 llvm::FoldingSetNodeID ID1, ID2;

1061 OldConstr->Profile(ID1, Context, true);

1062 NewConstr->Profile(ID2, Context, true);

1063 return ID1 == ID2;

1064}

1065

1068

1069

1070

1071

1073 "Non-function templates don't need to be checked");

1074

1077

1079 for (const Expr *Constraint : ACs)

1081 Constraint))

1082 return true;

1083

1084 return false;

1085}

1086

1094 TemplateIDRange, Satisfaction))

1095 return true;

1096

1099 TemplateArgString = " ";

1103

1105 diag::err_template_arg_list_constraints_not_satisfied)

1107 << TemplateArgString << TemplateIDRange;

1109 return true;

1110 }

1111 return false;

1112}

1113

1118

1120

1121

1124 if (TemplateAC.empty()) {

1126 return false;

1127 }

1128

1129

1130

1133

1134 std::optional MLTAL =

1135 SetupConstraintCheckingTemplateArgumentsAndScope(Decl, TemplateArgs,

1137

1138 if (!MLTAL)

1139 return true;

1140

1143 if (auto *Method = dyn_cast(Decl)) {

1144 ThisQuals = Method->getMethodQualifiers();

1145 Record = Method->getParent();

1146 }

1147

1151

1154 PointOfInstantiation, Satisfaction);

1155}

1156

1161 && "Diagnose() can only be used on an unsatisfied requirement");

1164 llvm_unreachable("Diagnosing a dependent requirement");

1165 break;

1168 if (!SubstDiag->DiagMessage.empty())

1169 S.Diag(SubstDiag->DiagLoc,

1170 diag::note_expr_requirement_expr_substitution_error)

1171 << (int)First << SubstDiag->SubstitutedEntity

1172 << SubstDiag->DiagMessage;

1173 else

1174 S.Diag(SubstDiag->DiagLoc,

1175 diag::note_expr_requirement_expr_unknown_substitution_error)

1176 << (int)First << SubstDiag->SubstitutedEntity;

1177 break;

1178 }

1181 diag::note_expr_requirement_noexcept_not_met)

1183 break;

1185 auto *SubstDiag =

1187 if (!SubstDiag->DiagMessage.empty())

1188 S.Diag(SubstDiag->DiagLoc,

1189 diag::note_expr_requirement_type_requirement_substitution_error)

1190 << (int)First << SubstDiag->SubstitutedEntity

1191 << SubstDiag->DiagMessage;

1192 else

1193 S.Diag(SubstDiag->DiagLoc,

1194 diag::note_expr_requirement_type_requirement_unknown_substitution_error)

1195 << (int)First << SubstDiag->SubstitutedEntity;

1196 break;

1197 }

1202

1203

1206 diag::note_expr_requirement_constraints_not_satisfied_simple)

1209 } else {

1211 diag::note_expr_requirement_constraints_not_satisfied)

1212 << (int)First << ConstraintExpr;

1213 }

1215 break;

1216 }

1218 llvm_unreachable("We checked this above");

1219 }

1220}

1221

1226 && "Diagnose() can only be used on an unsatisfied requirement");

1229 llvm_unreachable("Diagnosing a dependent requirement");

1230 return;

1233 if (!SubstDiag->DiagMessage.empty())

1234 S.Diag(SubstDiag->DiagLoc,

1235 diag::note_type_requirement_substitution_error) << (int)First

1236 << SubstDiag->SubstitutedEntity << SubstDiag->DiagMessage;

1237 else

1238 S.Diag(SubstDiag->DiagLoc,

1239 diag::note_type_requirement_unknown_substitution_error)

1240 << (int)First << SubstDiag->SubstitutedEntity;

1241 return;

1242 }

1243 default:

1244 llvm_unreachable("Unknown satisfaction status");

1245 return;

1246 }

1247}

1249 Expr *SubstExpr,

1250 bool First = true);

1251

1255 using SubstitutionDiagnostic = std::pair<SourceLocation, StringRef>;

1257 if (auto *SubstDiag = Record.dyn_cast<SubstitutionDiagnostic *>())

1258 S.Diag(SubstDiag->first, diag::note_nested_requirement_substitution_error)

1260 << SubstDiag->second;

1261 else

1265 }

1266}

1267

1269 Expr *SubstExpr,

1272 if (BinaryOperator *BO = dyn_cast(SubstExpr)) {

1273 switch (BO->getOpcode()) {

1274

1275

1276

1277 case BO_LOr:

1278

1281 false);

1282 return;

1283 case BO_LAnd: {

1284 bool LHSSatisfied =

1285 BO->getLHS()->EvaluateKnownConstInt(S.Context).getBoolValue();

1286 if (LHSSatisfied) {

1287

1289 return;

1290 }

1291

1293

1294

1295 bool RHSSatisfied =

1296 BO->getRHS()->EvaluateKnownConstInt(S.Context).getBoolValue();

1297 if (!RHSSatisfied)

1299 false);

1300 return;

1301 }

1302 case BO_GE:

1303 case BO_LE:

1304 case BO_GT:

1305 case BO_LT:

1306 case BO_EQ:

1307 case BO_NE:

1308 if (BO->getLHS()->getType()->isIntegerType() &&

1309 BO->getRHS()->getType()->isIntegerType()) {

1312 BO->getLHS()->EvaluateAsInt(SimplifiedLHS, S.Context,

1314 true);

1315 BO->getRHS()->EvaluateAsInt(SimplifiedRHS, S.Context,

1317 true);

1318 if (!SimplifiedLHS.Diag && ! SimplifiedRHS.Diag) {

1320 diag::note_atomic_constraint_evaluated_to_false_elaborated)

1325 return;

1326 }

1327 }

1328 break;

1329

1330 default:

1331 break;

1332 }

1333 } else if (auto *CSE = dyn_cast(SubstExpr)) {

1334 if (CSE->getTemplateArgsAsWritten()->NumTemplateArgs == 1) {

1336 CSE->getSourceRange().getBegin(),

1337 diag::

1338 note_single_arg_concept_specialization_constraint_evaluated_to_false)

1340 << CSE->getTemplateArgsAsWritten()->arguments()[0].getArgument()

1341 << CSE->getNamedConcept();

1342 } else {

1344 diag::note_concept_specialization_constraint_evaluated_to_false)

1345 << (int)First << CSE;

1346 }

1348 return;

1349 } else if (auto *RE = dyn_cast(SubstExpr)) {

1350

1352 if (!Req->isDependent() && !Req->isSatisfied()) {

1353 if (auto *E = dyn_castconcepts::ExprRequirement(Req))

1355 else if (auto *T = dyn_castconcepts::TypeRequirement(Req))

1357 else

1359 S, castconcepts::NestedRequirement(Req), First);

1360 break;

1361 }

1362 return;

1363 } else if (auto *TTE = dyn_cast(SubstExpr);

1364 TTE && TTE->getTrait() == clang::TypeTrait::BTT_IsDeducible) {

1365 assert(TTE->getNumArgs() == 2);

1367 diag::note_is_deducible_constraint_evaluated_to_false)

1368 << TTE->getArg(0)->getType() << TTE->getArg(1)->getType();

1369 return;

1370 }

1371

1373 diag::note_atomic_constraint_evaluated_to_false)

1375}

1376

1377template

1379 Sema &S, const llvm::PointerUnion<Expr *, SubstitutionDiagnostic *> &Record,

1380 bool First = true) {

1381 if (auto *Diag = Record.template dyn_cast<SubstitutionDiagnostic *>()) {

1382 S.Diag(Diag->first, diag::note_substituted_constraint_expr_is_ill_formed)

1383 << Diag->second;

1384 return;

1385 }

1386

1388}

1389

1390void

1394 "Attempted to diagnose a satisfied constraint");

1398 }

1399}

1400

1405 "Attempted to diagnose a satisfied constraint");

1406 for (auto &Record : Satisfaction) {

1409 }

1410}

1411

1415

1416

1417

1418 ConstrainedDecl = cast(ConstrainedDecl->getCanonicalDecl());

1419

1420 auto CacheEntry = NormalizationCache.find(ConstrainedDecl);

1421 if (CacheEntry == NormalizationCache.end()) {

1422 auto Normalized =

1423 NormalizedConstraint::fromConstraintExprs(*this, ConstrainedDecl,

1424 AssociatedConstraints);

1425 CacheEntry =

1426 NormalizationCache

1427 .try_emplace(ConstrainedDecl,

1428 Normalized

1430 std::move(*Normalized))

1431 : nullptr)

1432 .first;

1433 }

1434 return CacheEntry->second;

1435}

1436

1441 AssociatedConstraints);

1442}

1443

1444static bool

1449

1452 ArgsAsWritten))

1453 return true;

1455 ArgsAsWritten);

1456 }

1457

1462 ArgsAsWritten);

1463 }

1464

1466

1469 if (Atomic.ParameterMapping) {

1470 llvm::SmallBitVector OccurringIndices(TemplateParams->size());

1472 0, OccurringIndices);

1475 for (unsigned I = 0, J = 0, C = TemplateParams->size(); I != C; ++I)

1476 if (OccurringIndices[I])

1477 new (&(TempArgs)[J++])

1479 TemplateParams->begin()[I],

1480

1481

1482

1483

1484

1485

1486

1487

1489 ? ArgsAsWritten->arguments()[I].getLocation()

1491 Atomic.ParameterMapping.emplace(TempArgs, OccurringIndices.count());

1492 }

1494 ArgsAsWritten->arguments().empty()

1496 : ArgsAsWritten->arguments().front().getSourceRange().getBegin();

1498 ArgsAsWritten->arguments().empty()

1500 : ArgsAsWritten->arguments().front().getSourceRange().getEnd();

1502 S, InstLocBegin,

1504 Atomic.ConstraintDecl, {InstLocBegin, InstLocEnd});

1505 if (Inst.isInvalid())

1506 return true;

1508 return true;

1509

1512 std::copy(SubstArgs.arguments().begin(), SubstArgs.arguments().end(),

1513 TempArgs);

1514 Atomic.ParameterMapping.emplace(TempArgs, SubstArgs.size());

1515 return false;

1516}

1517

1523 true,

1524 nullptr,

1525 true);

1526

1529}

1530

1537 Kind}} {}

1538

1541 if (Other.isAtomic()) {

1543 } else if (Other.isFoldExpanded()) {

1545 Other.getFoldExpandedConstraint()->Kind,

1547 Other.getFoldExpandedConstraint()->Pattern);

1548 } else {

1550 new (C)

1553 Other.getCompoundKind());

1554 }

1555}

1556

1558 assert(isCompound() && "getLHS called on a non-compound constraint.");

1559 return cast(Constraint).getPointer()->LHS;

1560}

1561

1563 assert(isCompound() && "getRHS called on a non-compound constraint.");

1564 return cast(Constraint).getPointer()->RHS;

1565}

1566

1567std::optional

1568NormalizedConstraint::fromConstraintExprs(Sema &S, NamedDecl *D,

1570 assert(E.size() != 0);

1571 auto Conjunction = fromConstraintExpr(S, D, E[0]);

1572 if (!Conjunction)

1573 return std::nullopt;

1574 for (unsigned I = 1; I < E.size(); ++I) {

1575 auto Next = fromConstraintExpr(S, D, E[I]);

1576 if (!Next)

1577 return std::nullopt;

1580 }

1581 return Conjunction;

1582}

1583

1584std::optional

1585NormalizedConstraint::fromConstraintExpr(Sema &S, NamedDecl *D, const Expr *E) {

1586 assert(E != nullptr);

1587

1588

1589

1590

1591

1593

1594

1595

1596

1597

1598

1599 if (LogicalBinOp BO = E) {

1600 auto LHS = fromConstraintExpr(S, D, BO.getLHS());

1601 if (!LHS)

1602 return std::nullopt;

1603 auto RHS = fromConstraintExpr(S, D, BO.getRHS());

1604 if (!RHS)

1605 return std::nullopt;

1606

1609 } else if (auto *CSE = dyn_cast(E)) {

1611 {

1613 S, CSE->getExprLoc(),

1616 if (Inst.isInvalid())

1617 return std::nullopt;

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627 ConceptDecl *CD = CSE->getNamedConcept();

1630 if (!SubNF)

1631 return std::nullopt;

1632 }

1633

1634 std::optional New;

1635 New.emplace(S.Context, *SubNF);

1636

1638 return std::nullopt;

1639

1640 return New;

1641 } else if (auto *FE = dyn_cast(E);

1643 (FE->getOperator() == BinaryOperatorKind::BO_LAnd ||

1644 FE->getOperator() == BinaryOperatorKind::BO_LOr)) {

1645

1646

1647

1649 FE->getOperator() == BinaryOperatorKind::BO_LAnd

1652

1653 if (FE->getInit()) {

1654 auto LHS = fromConstraintExpr(S, D, FE->getLHS());

1655 auto RHS = fromConstraintExpr(S, D, FE->getRHS());

1656 if (!LHS || !RHS)

1657 return std::nullopt;

1658

1659 if (FE->isRightFold())

1661 Kind, std::move(*RHS), FE->getPattern()}};

1662 else

1664 Kind, std::move(*LHS), FE->getPattern()}};

1665

1667 S.Context, std::move(*LHS), std::move(*RHS),

1668 FE->getOperator() == BinaryOperatorKind::BO_LAnd ? CCK_Conjunction

1670 }

1671 auto Sub = fromConstraintExpr(S, D, FE->getPattern());

1672 if (!Sub)

1673 return std::nullopt;

1675 Kind, std::move(*Sub), FE->getPattern()}};

1676 }

1677

1679}

1680

1683

1684

1685

1686

1687

1691

1693 std::pair<unsigned, unsigned> DepthAndIndex = getDepthAndIndex(APack);

1696 });

1697 if (it != BPacks.end())

1698 return true;

1699 }

1700 return false;

1701}

1702

1706

1709

1713 LCNF.reserve(LCNF.size() + RCNF.size());

1714 while (!RCNF.empty())

1715 LCNF.push_back(RCNF.pop_back_val());

1716 return LCNF;

1717 }

1718

1719

1721 Res.reserve(LCNF.size() * RCNF.size());

1722 for (auto &LDisjunction : LCNF)

1723 for (auto &RDisjunction : RCNF) {

1724 NormalForm::value_type Combined;

1725 Combined.reserve(LDisjunction.size() + RDisjunction.size());

1726 std::copy(LDisjunction.begin(), LDisjunction.end(),

1727 std::back_inserter(Combined));

1728 std::copy(RDisjunction.begin(), RDisjunction.end(),

1729 std::back_inserter(Combined));

1730 Res.emplace_back(Combined);

1731 }

1732 return Res;

1733}

1734

1738

1741

1745 LDNF.reserve(LDNF.size() + RDNF.size());

1746 while (!RDNF.empty())

1747 LDNF.push_back(RDNF.pop_back_val());

1748 return LDNF;

1749 }

1750

1751

1753 Res.reserve(LDNF.size() * RDNF.size());

1754 for (auto &LConjunction : LDNF) {

1755 for (auto &RConjunction : RDNF) {

1756 NormalForm::value_type Combined;

1757 Combined.reserve(LConjunction.size() + RConjunction.size());

1758 std::copy(LConjunction.begin(), LConjunction.end(),

1759 std::back_inserter(Combined));

1760 std::copy(RConjunction.begin(), RConjunction.end(),

1761 std::back_inserter(Combined));

1762 Res.emplace_back(Combined);

1763 }

1764 }

1765 return Res;

1766}

1767

1773 if (const auto *FD1 = dyn_cast(D1)) {

1774 auto IsExpectedEntity = [](const FunctionDecl *FD) {

1778 };

1779 const auto *FD2 = dyn_cast(D2);

1780 (void)IsExpectedEntity;

1781 (void)FD1;

1782 (void)FD2;

1783 assert(IsExpectedEntity(FD1) && FD2 && IsExpectedEntity(FD2) &&

1784 "use non-instantiated function declaration for constraints partial "

1785 "ordering");

1786 }

1787

1788 if (AC1.empty()) {

1789 Result = AC2.empty();

1790 return false;

1791 }

1792 if (AC2.empty()) {

1793

1795 return false;

1796 }

1797

1798 std::pair<NamedDecl *, NamedDecl *> Key{D1, D2};

1799 auto CacheEntry = SubsumptionCache.find(Key);

1800 if (CacheEntry != SubsumptionCache.end()) {

1801 Result = CacheEntry->second;

1802 return false;

1803 }

1804

1807

1808 for (size_t I = 0; I != AC1.size() && I != AC2.size(); ++I) {

1809 if (Depth2 > Depth1) {

1810 AC1[I] = AdjustConstraintDepth(*this, Depth2 - Depth1)

1811 .TransformExpr(const_cast<Expr *>(AC1[I]))

1812 .get();

1813 } else if (Depth1 > Depth2) {

1814 AC2[I] = AdjustConstraintDepth(*this, Depth1 - Depth2)

1815 .TransformExpr(const_cast<Expr *>(AC2[I]))

1816 .get();

1817 }

1818 }

1819

1821 *this, D1, AC1, D2, AC2, Result,

1824 }))

1825 return true;

1826 SubsumptionCache.try_emplace(Key, Result);

1827 return false;

1828}

1829

1833

1834 return false;

1835

1836 if (AC1.empty() || AC2.empty())

1837 return false;

1838

1839 auto NormalExprEvaluator =

1842 };

1843

1844 const Expr *AmbiguousAtomic1 = nullptr, *AmbiguousAtomic2 = nullptr;

1845 auto IdenticalExprEvaluator =

1848 return false;

1850 if (EA == EB)

1851 return true;

1852

1853

1854

1855 llvm::FoldingSetNodeID IDA, IDB;

1857 EB->Profile(IDB, Context, true);

1858 if (IDA != IDB)

1859 return false;

1860

1861 AmbiguousAtomic1 = EA;

1862 AmbiguousAtomic2 = EB;

1863 return true;

1864 };

1865

1866 {

1867

1870 if (!Normalized1)

1871 return false;

1874

1876 if (!Normalized2)

1877 return false;

1880

1881 bool Is1AtLeastAs2Normally =

1883 bool Is2AtLeastAs1Normally =

1885 bool Is1AtLeastAs2 = clang::subsumes(DNF1, CNF2, IdenticalExprEvaluator);

1886 bool Is2AtLeastAs1 = clang::subsumes(DNF2, CNF1, IdenticalExprEvaluator);

1887 if (Is1AtLeastAs2 == Is1AtLeastAs2Normally &&

1888 Is2AtLeastAs1 == Is2AtLeastAs1Normally)

1889

1890 return false;

1891 }

1892

1893

1894 assert(AmbiguousAtomic1 && AmbiguousAtomic2);

1895

1896 Diag(AmbiguousAtomic1->getBeginLoc(), diag::note_ambiguous_atomic_constraints)

1898 Diag(AmbiguousAtomic2->getBeginLoc(),

1899 diag::note_ambiguous_atomic_constraints_similar_expression)

1900 << AmbiguousAtomic2->getSourceRange();

1901 return true;

1902}

1903

1908 Requirement(IsSimple ? RK_Simple : RK_Compound, Status == SS_Dependent,

1909 Status == SS_Dependent &&

1910 (E->containsUnexpandedParameterPack() ||

1911 Req.containsUnexpandedParameterPack()),

1912 Status == SS_Satisfied), Value(E), NoexceptLoc(NoexceptLoc),

1913 TypeReq(Req), SubstitutedConstraintExpr(SubstitutedConstraintExpr),

1914 Status(Status) {

1915 assert((!IsSimple || (Req.isEmpty() && NoexceptLoc.isInvalid())) &&

1916 "Simple requirement must not have a return type requirement or a "

1917 "noexcept specification");

1919 (SubstitutedConstraintExpr != nullptr));

1920}

1921

1925 Requirement(IsSimple ? RK_Simple : RK_Compound, Req.isDependent(),

1926 Req.containsUnexpandedParameterPack(), false),

1927 Value(ExprSubstDiag), NoexceptLoc(NoexceptLoc), TypeReq(Req),

1928 Status(SS_ExprSubstitutionFailure) {

1929 assert((!IsSimple || (Req.isEmpty() && NoexceptLoc.isInvalid())) &&

1930 "Simple requirement must not have a return type requirement or a "

1931 "noexcept specification");

1932}

1933

1936 TypeConstraintInfo(TPL, false) {

1937 assert(TPL->size() == 1);

1939 cast(TPL->getParam(0))->getTypeConstraint();

1940 assert(TC &&

1941 "TPL must have a template type parameter with a type constraint");

1942 auto *Constraint =

1945 Constraint->getTemplateArgsAsWritten() &&

1947 Constraint->getTemplateArgsAsWritten()->arguments().drop_front(1));

1948 TypeConstraintInfo.setInt(Dependent ? true : false);

1949}

1950

1954

1955

1956

1957 true),

1959 Status(T->getType()->isInstantiationDependentType() ? SS_Dependent

1961

1964 assert(isCompound() && "getCompoundKind on a non-compound constraint..");

1965 return cast(Constraint).getInt();

1966}

1967

1969 assert(isAtomic() && "getAtomicConstraint called on non-atomic constraint.");

1970 return cast<AtomicConstraint *>(Constraint);

1971}

1972

1975 assert(isFoldExpanded() &&

1976 "getFoldExpandedConstraint called on non-fold-expanded constraint.");

1977 return cast<FoldExpandedConstraint *>(Constraint);

1978}

This file provides some common utility functions for processing Lambda related AST Constructs.

Defines the C++ Decl subclasses, other than those for templates (found in DeclTemplate....

Defines Expressions and AST nodes for C++2a concepts.

static DiagnosticBuilder Diag(DiagnosticsEngine *Diags, const LangOptions &Features, FullSourceLoc TokLoc, const char *TokBegin, const char *TokRangeBegin, const char *TokRangeEnd, unsigned DiagID)

Produce a diagnostic highlighting some portion of a literal.

llvm::MachO::Record Record

Defines and computes precedence levels for binary/ternary operators.

static std::string toString(const clang::SanitizerSet &Sanitizers)

Produce a string containing comma-separated names of sanitizers in Sanitizers set.

static bool CheckConstraintSatisfaction(Sema &S, const NamedDecl *Template, ArrayRef< const Expr * > ConstraintExprs, llvm::SmallVectorImpl< Expr * > &Converted, const MultiLevelTemplateArgumentList &TemplateArgsLists, SourceRange TemplateIDRange, ConstraintSatisfaction &Satisfaction)

static const Expr * SubstituteConstraintExpressionWithoutSatisfaction(Sema &S, const Sema::TemplateCompareNewDeclInfo &DeclInfo, const Expr *ConstrExpr)

static ExprResult calculateConstraintSatisfaction(Sema &S, const Expr *ConstraintExpr, ConstraintSatisfaction &Satisfaction, const ConstraintEvaluator &Evaluator)

static bool DiagRecursiveConstraintEval(Sema &S, llvm::FoldingSetNodeID &ID, const NamedDecl *Templ, const Expr *E, const MultiLevelTemplateArgumentList &MLTAL)

static void diagnoseWellFormedUnsatisfiedConstraintExpr(Sema &S, Expr *SubstExpr, bool First=true)

static void diagnoseUnsatisfiedRequirement(Sema &S, concepts::ExprRequirement *Req, bool First)

static bool substituteParameterMappings(Sema &S, NormalizedConstraint &N, ConceptDecl *Concept, const MultiLevelTemplateArgumentList &MLTAL, const ASTTemplateArgumentListInfo *ArgsAsWritten)

static void diagnoseUnsatisfiedConstraintExpr(Sema &S, const llvm::PointerUnion< Expr *, SubstitutionDiagnostic * > &Record, bool First=true)

static unsigned CalculateTemplateDepthForConstraints(Sema &S, const NamedDecl *ND, bool SkipForSpecialization=false)

static bool isInvalid(LocType Loc, bool *Invalid)

__DEVICE__ void * memcpy(void *__a, const void *__b, size_t __c)

Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...

QualType getReferenceQualifiedType(const Expr *e) const

getReferenceQualifiedType - Given an expr, will return the type for that expression,...

bool hasSameUnqualifiedType(QualType T1, QualType T2) const

Determine whether the given types are equivalent after cvr-qualifiers have been removed.

AtomicExpr - Variadic atomic builtins: __atomic_exchange, __atomic_fetch_*, __atomic_load,...

SourceLocation getBeginLoc() const LLVM_READONLY

A builtin binary operation expression such as "x + y" or "x <= y".

static OverloadedOperatorKind getOverloadedOperator(Opcode Opc)

Retrieve the overloaded operator kind that corresponds to the given binary opcode.

StringRef getOpcodeStr() const

static BinaryOperator * Create(const ASTContext &C, Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy, ExprValueKind VK, ExprObjectKind OK, SourceLocation opLoc, FPOptionsOverride FPFeatures)

static Opcode getOverloadedOpcode(OverloadedOperatorKind OO)

Retrieve the binary opcode that corresponds to the given overloaded operator.

Represents a C++ conversion function within a class.

Represents a folding of a pack over an operator.

SourceLocation getBeginLoc() const LLVM_READONLY

Expr * getInit() const

Get the operand that doesn't contain a pack, for a binary fold.

std::optional< unsigned > getNumExpansions() const

SourceLocation getEllipsisLoc() const

bool isLeftFold() const

Does this produce a left-associated sequence of operators?

bool isRightFold() const

Does this produce a right-associated sequence of operators?

Expr * getPattern() const

Get the pattern, that is, the operand that contains an unexpanded pack.

BinaryOperatorKind getOperator() const

Represents a C++ struct/union/class.

Declaration of a C++20 concept.

Expr * getConstraintExpr() const

Represents the specialization of a concept - evaluates to a prvalue of type bool.

SourceLocation getBeginLoc() const LLVM_READONLY

ArrayRef< TemplateArgument > getTemplateArguments() const

const ASTTemplateArgumentListInfo * getTemplateArgsAsWritten() const

const ASTConstraintSatisfaction & getSatisfaction() const

Get elaborated satisfaction info about the template arguments' satisfaction of the named concept.

ConceptDecl * getNamedConcept() const

The result of a constraint satisfaction check, containing the necessary information to diagnose an un...

std::pair< SourceLocation, StringRef > SubstitutionDiagnostic

void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &C)

llvm::SmallVector< Detail, 4 > Details

The substituted constraint expr, if the template arguments could be substituted into them,...

DeclContext - This is used only as base class of specific decl types that can act as declaration cont...

DeclContext * getParent()

getParent - Returns the containing DeclContext.

bool isTransparentContext() const

isTransparentContext - Determines whether this context is a "transparent" context,...

bool isDependentContext() const

Determines whether this context is dependent on a template parameter.

DeclContext * getNonTransparentContext()

Decl - This represents one declaration (or definition), e.g.

FriendObjectKind getFriendObjectKind() const

Determines whether this declaration is the object of a friend declaration and, if so,...

bool isFunctionOrFunctionTemplate() const

Whether this declaration is a function or function template.

bool isParameterPack() const

Whether this declaration is a parameter pack.

FunctionDecl * getAsFunction() LLVM_READONLY

Returns the function itself, or the templated function if this is a function template.

bool isInvalidDecl() const

SourceLocation getLocation() const

DeclContext * getLexicalDeclContext()

getLexicalDeclContext - The declaration context where this Decl was lexically declared (LexicalDC).

virtual Decl * getCanonicalDecl()

Retrieves the "canonical" declaration of the given declaration.

virtual SourceRange getSourceRange() const LLVM_READONLY

Source range that this declaration covers.

Expr * getTrailingRequiresClause()

Get the constraint-expression introduced by the trailing requires-clause in the function/member decla...

RAII object that enters a new expression evaluation context.

This represents one expression.

@ SE_NoSideEffects

Strictly evaluate the expression.

bool isTypeDependent() const

Determines whether the type of this expression depends on.

Expr * IgnoreParenImpCasts() LLVM_READONLY

Skip past any parentheses and implicit casts which might surround this expression until reaching a fi...

bool containsErrors() const

Whether this expression contains subexpressions which had errors, e.g.

bool EvaluateAsConstantExpr(EvalResult &Result, const ASTContext &Ctx, ConstantExprKind Kind=ConstantExprKind::Normal) const

Evaluate an expression that is required to be a constant expression.

SourceLocation getExprLoc() const LLVM_READONLY

getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...

Represents difference between two FPOptions values.

Represents a function declaration or definition.

FunctionTemplateDecl * getDescribedFunctionTemplate() const

Retrieves the function template that is described by this function declaration.

SourceLocation getPointOfInstantiation() const

Retrieve the (first) point of instantiation of a function template specialization or a member of a cl...

ArrayRef< ParmVarDecl * > parameters() const

FunctionTemplateDecl * getPrimaryTemplate() const

Retrieve the primary template that this function template specialization either specializes or was in...

const TemplateArgumentList * getTemplateSpecializationArgs() const

Retrieve the template arguments used to produce this function template specialization from the primar...

bool isTemplateInstantiation() const

Determines if the given function was instantiated from a function template.

TemplatedKind

The kind of templated function a FunctionDecl can be.

@ TK_MemberSpecialization

@ TK_DependentNonTemplate

@ TK_FunctionTemplateSpecialization

TemplatedKind getTemplatedKind() const

What kind of templated function this is.

FunctionDecl * getInstantiatedFromDecl() const

FunctionDecl * getInstantiatedFromMemberFunction() const

If this function is an instantiation of a member function of a class template specialization,...

Declaration of a template function.

FunctionDecl * getTemplatedDecl() const

Get the underlying function declaration of the template.

FunctionTemplateDecl * getInstantiatedFromMemberTemplate() const

static ImplicitCastExpr * Create(const ASTContext &Context, QualType T, CastKind Kind, Expr *Operand, const CXXCastPath *BasePath, ExprValueKind Cat, FPOptionsOverride FPO)

const TypeClass * getTypePtr() const

Describes the capture of a variable or of this, or of a C++1y init-capture.

A stack-allocated class that identifies which local variable declaration instantiations are present i...

Data structure that captures multiple levels of template argument lists for use in template instantia...

const ArgList & getInnermost() const

Retrieve the innermost template argument list.

unsigned getNumLevels() const

Determine the number of levels in this template argument list.

unsigned getNumSubstitutedLevels() const

Determine the number of substituted levels in this template argument list.

const ArgList & getOutermost() const

Retrieve the outermost template argument list.

bool isAnyArgInstantiationDependent() const

This represents a decl that may have a name.

void EmitToString(DiagnosticsEngine &Diags, SmallVectorImpl< char > &Buf) const

A (possibly-)qualified type.

The collection of all-type qualifiers we support.

Scope - A scope is a transient data structure that is used while parsing the program.

SemaDiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID, bool DeferHint=false)

Emit a diagnostic.

PartialDiagnostic PDiag(unsigned DiagID=0)

Build a partial diagnostic.

RAII object used to change the argument pack substitution index within a Sema object.

RAII object used to temporarily allow the C++ 'this' expression to be used, with the given qualifiers...

RAII class used to determine whether SFINAE has trapped any errors that occur during template argumen...

bool hasErrorOccurred() const

Determine whether any SFINAE errors have been trapped.

SourceLocation getLocation() const

bool ContainsDecl(const NamedDecl *ND) const

const DeclContext * getDeclContext() const

const NamedDecl * getDecl() const

const DeclContext * getLexicalDeclContext() const

Sema - This implements semantic analysis and AST building for C.

bool CheckInstantiatedFunctionTemplateConstraints(SourceLocation PointOfInstantiation, FunctionDecl *Decl, ArrayRef< TemplateArgument > TemplateArgs, ConstraintSatisfaction &Satisfaction)

bool CheckParameterPacksForExpansion(SourceLocation EllipsisLoc, SourceRange PatternRange, ArrayRef< UnexpandedParameterPack > Unexpanded, const MultiLevelTemplateArgumentList &TemplateArgs, bool &ShouldExpand, bool &RetainExpansion, std::optional< unsigned > &NumExpansions)

Determine whether we could expand a pack expansion with the given set of parameter packs into separat...

bool ConstraintExpressionDependsOnEnclosingTemplate(const FunctionDecl *Friend, unsigned TemplateDepth, const Expr *Constraint)

DiagnosticsEngine & getDiagnostics() const

ExprResult SubstConstraintExprWithoutSatisfaction(Expr *E, const MultiLevelTemplateArgumentList &TemplateArgs)

bool CheckConstraintExpression(const Expr *CE, Token NextToken=Token(), bool *PossibleNonPrimary=nullptr, bool IsTrailingRequiresClause=false)

Check whether the given expression is a valid constraint expression.

bool SubstTemplateArguments(ArrayRef< TemplateArgumentLoc > Args, const MultiLevelTemplateArgumentList &TemplateArgs, TemplateArgumentListInfo &Outputs)

std::optional< unsigned > getNumArgumentsInExpansionFromUnexpanded(llvm::ArrayRef< UnexpandedParameterPack > Unexpanded, const MultiLevelTemplateArgumentList &TemplateArgs)

bool FriendConstraintsDependOnEnclosingTemplate(const FunctionDecl *FD)

bool EnsureTemplateArgumentListConstraints(TemplateDecl *Template, const MultiLevelTemplateArgumentList &TemplateArgs, SourceRange TemplateIDRange)

Ensure that the given template arguments satisfy the constraints associated with the given template,...

const LangOptions & getLangOpts() const

void collectUnexpandedParameterPacks(TemplateArgument Arg, SmallVectorImpl< UnexpandedParameterPack > &Unexpanded)

Collect the set of unexpanded parameter packs within the given template argument.

bool CheckConstraintSatisfaction(const NamedDecl *Template, ArrayRef< const Expr * > ConstraintExprs, const MultiLevelTemplateArgumentList &TemplateArgLists, SourceRange TemplateIDRange, ConstraintSatisfaction &Satisfaction)

Check whether the given list of constraint expressions are satisfied (as if in a 'conjunction') given...

bool AreConstraintExpressionsEqual(const NamedDecl *Old, const Expr *OldConstr, const TemplateCompareNewDeclInfo &New, const Expr *NewConstr)

sema::FunctionScopeInfo * getCurFunction() const

std::optional< sema::TemplateDeductionInfo * > isSFINAEContext() const

Determines whether we are currently in a context where template argument substitution failures are no...

bool MaybeEmitAmbiguousAtomicConstraintsDiagnostic(NamedDecl *D1, ArrayRef< const Expr * > AC1, NamedDecl *D2, ArrayRef< const Expr * > AC2)

If D1 was not at least as constrained as D2, but would've been if a pair of atomic constraints involv...

MultiLevelTemplateArgumentList getTemplateInstantiationArgs(const NamedDecl *D, const DeclContext *DC=nullptr, bool Final=false, std::optional< ArrayRef< TemplateArgument > > Innermost=std::nullopt, bool RelativeToPrimary=false, const FunctionDecl *Pattern=nullptr, bool ForConstraintInstantiation=false, bool SkipForSpecialization=false, bool ForDefaultArgumentSubstitution=false)

Retrieve the template argument list(s) that should be used to instantiate the definition of the given...

ExprResult PerformContextuallyConvertToBool(Expr *From)

PerformContextuallyConvertToBool - Perform a contextual conversion of the expression From to bool (C+...

bool CheckFunctionConstraints(const FunctionDecl *FD, ConstraintSatisfaction &Satisfaction, SourceLocation UsageLoc=SourceLocation(), bool ForOverloadResolution=false)

Check whether the given function decl's trailing requires clause is satisfied, if any.

TemplateNameKindForDiagnostics getTemplateNameKindForDiagnostics(TemplateName Name)

bool IsAtLeastAsConstrained(NamedDecl *D1, MutableArrayRef< const Expr * > AC1, NamedDecl *D2, MutableArrayRef< const Expr * > AC2, bool &Result)

Check whether the given declaration's associated constraints are at least as constrained than another...

void PushSatisfactionStackEntry(const NamedDecl *D, const llvm::FoldingSetNodeID &ID)

void PopSatisfactionStackEntry()

ExprResult SubstConstraintExpr(Expr *E, const MultiLevelTemplateArgumentList &TemplateArgs)

void MarkUsedTemplateParameters(const Expr *E, bool OnlyDeduced, unsigned Depth, llvm::SmallBitVector &Used)

Mark which template parameters are used in a given expression.

@ ConstantEvaluated

The current context is "potentially evaluated" in C++11 terms, but the expression is evaluated at com...

bool SatisfactionStackContains(const NamedDecl *D, const llvm::FoldingSetNodeID &ID) const

ExprResult BuildEmptyCXXFoldExpr(SourceLocation EllipsisLoc, BinaryOperatorKind Operator)

TemplateArgumentLoc getIdentityTemplateArgumentLoc(NamedDecl *Param, SourceLocation Location)

Get a template argument mapping the given template parameter to itself, e.g.

std::string getTemplateArgumentBindingsText(const TemplateParameterList *Params, const TemplateArgumentList &Args)

Produces a formatted string that describes the binding of template parameters to template arguments.

void DiagnoseUnsatisfiedConstraint(const ConstraintSatisfaction &Satisfaction, bool First=true)

Emit diagnostics explaining why a constraint expression was deemed unsatisfied.

const NormalizedConstraint * getNormalizedAssociatedConstraints(NamedDecl *ConstrainedDecl, ArrayRef< const Expr * > AssociatedConstraints)

Encodes a location in the source.

bool isValid() const

Return true if this is a valid SourceLocation object.

A trivial tuple used to represent a source range.

SourceLocation getBegin() const

SourceRange getSourceRange() const LLVM_READONLY

SourceLocation tokens are not useful in isolation - they are low level value objects created/interpre...

void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context, bool Canonical, bool ProfileLambdaExpr=false) const

Produce a unique representation of the given statement.

SourceLocation getBeginLoc() const LLVM_READONLY

A convenient class for passing around template argument information.

llvm::ArrayRef< TemplateArgumentLoc > arguments() const

Location wrapper for a TemplateArgument.

The base class of all kinds of template declarations (e.g., class, function, etc.).

void getAssociatedConstraints(llvm::SmallVectorImpl< const Expr * > &AC) const

Get the total constraint-expression associated with this template, including constraint-expressions d...

TemplateParameterList * getTemplateParameters() const

Get the list of template parameters.

Represents a C++ template name within the type system.

Stores a list of template parameters for a TemplateDecl and its derived classes.

NamedDecl * getParam(unsigned Idx)

static bool anyInstantiationDependentTemplateArguments(ArrayRef< TemplateArgumentLoc > Args)

Declaration of a template type parameter.

Wrapper for template type parameters.

Token - This structure provides full information about a lexed token.

bool is(tok::TokenKind K) const

is/isNot - Predicates to check if this token is a specific kind, as in "if (Tok.is(tok::l_brace)) {....

tok::TokenKind getKind() const

A semantic tree transformation that allows one to transform one abstract syntax tree into another.

Models the abbreviated syntax to constrain a template type parameter: template <convertible_to<string...

Expr * getImmediatelyDeclaredConstraint() const

Get the immediately-declared constraint expression introduced by this type-constraint,...

TyLocType push(QualType T)

Pushes space for a new TypeLoc of the given type.

A container of type source information.

SourceLocation getNameLoc() const

void setNameLoc(SourceLocation Loc)

The base class of the type hierarchy.

bool isSpecificBuiltinType(unsigned K) const

Test for a particular builtin type.

bool isDependentType() const

Whether this type is a dependent type, meaning that its definition somehow depends on a template para...

bool isFunctionType() const

Represent the declaration of a variable (in which case it is an lvalue) a function (in which case it ...

bool isInitCapture() const

Whether this variable is the implicit variable for a lambda init-capture.

ReturnTypeRequirement()

No return type requirement was specified.

bool isTypeConstraint() const

SubstitutionDiagnostic * getSubstitutionDiagnostic() const

A requires-expression requirement which queries the validity and properties of an expression ('simple...

SubstitutionDiagnostic * getExprSubstitutionDiagnostic() const

ConceptSpecializationExpr * getReturnTypeRequirementSubstitutedConstraintExpr() const

@ SS_ConstraintsNotSatisfied

@ SS_TypeRequirementSubstitutionFailure

@ SS_ExprSubstitutionFailure

const ReturnTypeRequirement & getReturnTypeRequirement() const

SatisfactionStatus getSatisfactionStatus() const

SourceLocation getNoexceptLoc() const

ExprRequirement(Expr *E, bool IsSimple, SourceLocation NoexceptLoc, ReturnTypeRequirement Req, SatisfactionStatus Status, ConceptSpecializationExpr *SubstitutedConstraintExpr=nullptr)

Construct a compound requirement.

A requires-expression requirement which is satisfied when a general constraint expression is satisfie...

const ASTConstraintSatisfaction & getConstraintSatisfaction() const

StringRef getInvalidConstraintEntity()

A static requirement that can be used in a requires-expression to check properties of types and expre...

bool containsUnexpandedParameterPack() const

A requires-expression requirement which queries the existence of a type name or type template special...

SubstitutionDiagnostic * getSubstitutionDiagnostic() const

SatisfactionStatus getSatisfactionStatus() const

TypeRequirement(TypeSourceInfo *T)

Construct a type requirement from a type.

Provides information about an attempted template argument deduction, whose success or failure was des...

void takeSFINAEDiagnostic(PartialDiagnosticAt &PD)

Take ownership of the SFINAE diagnostic.

bool Sub(InterpState &S, CodePtr OpPC)

The JSON file list parser is used to communicate input to InstallAPI.

OverloadedOperatorKind

Enumeration specifying the different kinds of C++ overloaded operators.

@ OO_None

Not an overloaded operator.

NormalForm makeCNF(const NormalizedConstraint &Normalized)

NormalForm makeDNF(const NormalizedConstraint &Normalized)

@ OK_Ordinary

An ordinary object is located at an address in memory.

bool subsumes(const NormalForm &PDNF, const NormalForm &QCNF, const AtomicSubsumptionEvaluator &E)

bool isLambdaCallOperator(const CXXMethodDecl *MD)

@ Result

The result type of a method or function.

std::pair< unsigned, unsigned > getDepthAndIndex(const NamedDecl *ND)

Retrieve the depth and index of a template parameter.

const NormalizedConstraint * getNormalizedAssociatedConstraints(Sema &S, NamedDecl *ConstrainedDecl, ArrayRef< const Expr * > AssociatedConstraints)

prec::Level getBinOpPrecedence(tok::TokenKind Kind, bool GreaterThanIsOperator, bool CPlusPlus11)

Return the precedence of the specified binary operator token.

bool isLambdaConversionOperator(CXXConversionDecl *C)

@ VK_PRValue

A pr-value expression (in the C++11 taxonomy) produces a temporary value.

const FunctionProtoType * T

std::pair< llvm::PointerUnion< const TemplateTypeParmType *, NamedDecl * >, SourceLocation > UnexpandedParameterPack

std::pair< SourceLocation, PartialDiagnostic > PartialDiagnosticAt

A partial diagnostic along with the source location where this diagnostic occurs.

@ Other

Other implicit parameter.

The result of a constraint satisfaction check, containing the necessary information to diagnose an un...

Represents an explicit template argument list in C++, e.g., the "" in "sort".

SourceLocation getLAngleLoc() const

llvm::ArrayRef< TemplateArgumentLoc > arguments() const

unsigned NumTemplateArgs

The number of template arguments in TemplateArgs.

SourceLocation getRAngleLoc() const

bool subsumes(ASTContext &C, const AtomicConstraint &Other) const

bool hasMatchingParameterMapping(ASTContext &C, const AtomicConstraint &Other) const

const Expr * ConstraintExpr

EvalResult is a struct with detailed info about an evaluated expression.

APValue Val

Val - This is the value the expression can be folded to.

SmallVectorImpl< PartialDiagnosticAt > * Diag

Diag - If this is non-null, it will be filled in with a stack of notes indicating why evaluation fail...

NormalizedConstraint Constraint

static bool AreCompatibleForSubsumption(const FoldExpandedConstraint &A, const FoldExpandedConstraint &B)

A normalized constraint, as defined in C++ [temp.constr.normal], is either an atomic constraint,...

llvm::PointerUnion< AtomicConstraint *, FoldExpandedConstraint *, CompoundConstraint > Constraint

bool isFoldExpanded() const

NormalizedConstraint & getRHS() const

llvm::PointerIntPair< NormalizedConstraintPair *, 1, CompoundConstraintKind > CompoundConstraint

CompoundConstraintKind getCompoundKind() const

NormalizedConstraint(AtomicConstraint *C)

AtomicConstraint * getAtomicConstraint() const

FoldExpandedConstraint * getFoldExpandedConstraint() const

NormalizedConstraint & getLHS() const

A stack object to be created when performing template instantiation.

bool isInvalid() const

Determines whether we have exceeded the maximum recursive template instantiations.