clang: lib/Sema/SemaOpenACCClause.cpp Source File (original) (raw)
1
2
3
4
5
6
7
8
9
10
11
12
19
20using namespace clang;
21
22namespace {
23bool checkValidAfterDeviceType(
26
27
28
29
30
31
32
35 return false;
36
37
38
39
47 return false;
48 default:
49 break;
50 }
52
53
54
64 return false;
65 default:
66 break;
67 }
69
84 return false;
85 default:
86 break;
87 }
89
90
94 return false;
95 default:
96 break;
97 }
101
102 return false;
104
105
109 return false;
110 default:
111 break;
112 }
114
115
122 return false;
123 default:
124 break;
125 }
126 }
127 S.Diag(NewClause.getBeginLoc(), diag::err_acc_clause_after_device_type)
131 diag::note_acc_active_applies_clause_here)
132 << diag::ACCDeviceTypeApp::Active << DeviceTypeClause.getClauseKind();
133 return true;
134}
135
136
137
138
142
143 return DC;
144}
145
146class SemaOpenACCClauseVisitor {
147 SemaOpenACC &SemaRef;
148 ASTContext &Ctx;
149 ArrayRef<const OpenACCClause *> ExistingClauses;
150
151
152
153
154 bool
155 DiagGangWorkerVectorSeqConflict(SemaOpenACC::OpenACCParsedClause &Clause) {
156 if (Clause.getDirectiveKind() != OpenACCDirectiveKind::Loop &&
158 return false;
159 assert(Clause.getClauseKind() == OpenACCClauseKind::Gang ||
160 Clause.getClauseKind() == OpenACCClauseKind::Worker ||
161 Clause.getClauseKind() == OpenACCClauseKind::Vector);
162 const auto *Itr =
163 llvm::find_if(ExistingClauses, llvm::IsaPred);
164
165 if (Itr != ExistingClauses.end()) {
166 SemaRef.Diag(Clause.getBeginLoc(), diag::err_acc_clause_cannot_combine)
167 << Clause.getClauseKind() << (*Itr)->getClauseKind()
169 SemaRef.Diag((*Itr)->getBeginLoc(), diag::note_acc_previous_clause_here)
170 << (*Itr)->getClauseKind();
171
172 return true;
173 }
174 return false;
175 }
176
178 CheckModifierList(SemaOpenACC::OpenACCParsedClause &Clause,
185 return CurMods;
186
187 SemaRef.Diag(Clause.getLParenLoc(), diag::err_acc_invalid_modifier)
189
190 return CurMods ^ Bit;
191 };
193 if ((Mods | ValidKinds) == ValidKinds)
194 return Mods;
195
196 Mods = CheckSingle(Mods, ValidKinds, OpenACCModifierKind::Always);
197 Mods = CheckSingle(Mods, ValidKinds, OpenACCModifierKind::AlwaysIn);
198 Mods = CheckSingle(Mods, ValidKinds, OpenACCModifierKind::AlwaysOut);
199 Mods = CheckSingle(Mods, ValidKinds, OpenACCModifierKind::Readonly);
200 Mods = CheckSingle(Mods, ValidKinds, OpenACCModifierKind::Zero);
201 Mods = CheckSingle(Mods, ValidKinds, OpenACCModifierKind::Capture);
202 return Mods;
203 };
204
205
206
207 bool IsStructuredDataOrCompute =
211
213 default:
214 llvm_unreachable("Only for copy, copyin, copyout, create");
215 case OpenACCClauseKind::Copy:
216 case OpenACCClauseKind::PCopy:
217 case OpenACCClauseKind::PresentOrCopy:
218
219 return Check(OpenACCModifierKind::Always | OpenACCModifierKind::AlwaysIn |
220 OpenACCModifierKind::AlwaysOut |
221 OpenACCModifierKind::Capture);
222 case OpenACCClauseKind::CopyIn:
223 case OpenACCClauseKind::PCopyIn:
224 case OpenACCClauseKind::PresentOrCopyIn:
225
226 return Check(OpenACCModifierKind::Always | OpenACCModifierKind::AlwaysIn |
227 OpenACCModifierKind::Readonly |
228 (IsStructuredDataOrCompute ? OpenACCModifierKind::Capture
229 : OpenACCModifierKind::Invalid));
230 case OpenACCClauseKind::CopyOut:
231 case OpenACCClauseKind::PCopyOut:
232 case OpenACCClauseKind::PresentOrCopyOut:
233
234 return Check(OpenACCModifierKind::Always |
235 OpenACCModifierKind::AlwaysOut | OpenACCModifierKind::Zero |
236 (IsStructuredDataOrCompute ? OpenACCModifierKind::Capture
237 : OpenACCModifierKind::Invalid));
238 case OpenACCClauseKind::Create:
239 case OpenACCClauseKind::PCreate:
240 case OpenACCClauseKind::PresentOrCreate:
241
242 return Check(OpenACCModifierKind::Zero |
243 (IsStructuredDataOrCompute ? OpenACCModifierKind::Capture
244 : OpenACCModifierKind::Invalid));
245 }
246 llvm_unreachable("didn't return from switch above?");
247 }
248
249
250
251
252
253
254
255 template
256 bool DisallowSinceLastDeviceType(Pred HasPredicate,
257 SemaOpenACC::OpenACCParsedClause &Clause,
258 bool DTOverrides = true) {
259 using ItrTy = decltype(ExistingClauses.begin());
260 llvm::SmallVector DeviceTypeClauses;
261
262 ItrTy DevTypeItr =
263 llvm::find_if(ExistingClauses, llvm::IsaPred);
264 while (DevTypeItr != ExistingClauses.end()) {
265 DeviceTypeClauses.push_back(DevTypeItr);
266 DevTypeItr = std::find_if(std::next(DevTypeItr), ExistingClauses.end(),
267 llvm::IsaPred);
268 }
269
270 auto SinceLastDevType =
271 std::find_if(DeviceTypeClauses.empty() ? ExistingClauses.begin()
272 : DeviceTypeClauses.back(),
273 ExistingClauses.end(), HasPredicate);
274
275
276
277 if (SinceLastDevType != ExistingClauses.end()) {
279 diag::err_acc_clause_cannot_combine_same_device_type)
281 << (*SinceLastDevType)->getClauseKind() << !DeviceTypeClauses.empty();
282
283 SemaRef.Diag((*SinceLastDevType)->getBeginLoc(),
284 diag::note_acc_previous_clause_here)
285 << (*SinceLastDevType)->getClauseKind();
286
287 if (!DeviceTypeClauses.empty()) {
288 SemaRef.Diag((*DeviceTypeClauses.back())->getBeginLoc(),
289 diag::note_acc_active_applies_clause_here)
290 << diag::ACCDeviceTypeApp::Active
291 << (*DeviceTypeClauses.back())->getClauseKind();
292 }
293
294 return true;
295 }
296
297
298
299
300 if (DeviceTypeClauses.empty())
301 return false;
302
303 if (!DTOverrides) {
304
305
306
307 auto BeforeFirstDevType = std::find_if(
308 ExistingClauses.begin(), DeviceTypeClauses.front(), HasPredicate);
309
310 if (BeforeFirstDevType != DeviceTypeClauses.front()) {
312 diag::err_acc_clause_cannot_combine_before_device_type)
314 << (*BeforeFirstDevType)->getClauseKind();
315
316 SemaRef.Diag((*BeforeFirstDevType)->getBeginLoc(),
317 diag::note_acc_previous_clause_here)
318 << (*BeforeFirstDevType)->getClauseKind();
319
320 SemaRef.Diag((*DeviceTypeClauses.back())->getBeginLoc(),
321 diag::note_acc_active_applies_clause_here)
322 << diag::ACCDeviceTypeApp::Active
323 << (*DeviceTypeClauses.back())->getClauseKind();
324 return true;
325 }
326 }
327
328
329
330
333
334
336 return true;
337
339 return false;
341 StringRef RHSName = RHS.getIdentifierInfo()->getName();
342 if (LHSName.equals_insensitive(RHSName))
343 return true;
344
345
346
347 return (LHSName.equals_insensitive("acc_device_nvidia") &&
348 RHSName.equals_insensitive("nvidia")) ||
349 (RHSName.equals_insensitive("acc_device_nvidia") &&
350 LHSName.equals_insensitive("nvidia"));
351 };
352 const OpenACCDeviceTypeClause *ActiveDTClause =
354
355
356
357 for (unsigned Idx = 0; Idx < DeviceTypeClauses.size() - 1; ++Idx) {
358 ItrTy ProhibitedClause = std::find_if(
359 DeviceTypeClauses[Idx], DeviceTypeClauses[Idx + 1], HasPredicate);
360
361
362
363 if (ProhibitedClause == DeviceTypeClauses[Idx + 1])
364 continue;
365
366 const OpenACCDeviceTypeClause *CurDTClause =
368
373 if (areSameArch(CurArch, ActiveArch)) {
375 diag::err_acc_clause_conflicts_prev_dev_type)
377 << (ActiveArch.getIdentifierInfo()
378 ? ActiveArch.getIdentifierInfo()->getName()
379 : "*")
380 << (*ProhibitedClause)->getClauseKind();
381
382 SemaRef.Diag(ActiveDTClause->getBeginLoc(),
383 diag::note_acc_active_applies_clause_here)
384 << diag::ACCDeviceTypeApp::Active
386
387 SemaRef.Diag((*ProhibitedClause)->getBeginLoc(),
388 diag::note_acc_previous_clause_here)
389 << (*ProhibitedClause)->getClauseKind();
390
392 diag::note_acc_active_applies_clause_here)
393 << diag::ACCDeviceTypeApp::Applies
395
396 return true;
397 }
398 }
399 }
400
401
402
403 }
404
405
406 return false;
407 }
408
409
410
411 bool CheckValidRoutineGangWorkerVectorSeqNewClause(
412 SemaOpenACC::OpenACCParsedClause &Clause) {
413 if (Clause.getDirectiveKind() != OpenACCDirectiveKind::Routine)
414 return false;
415 if (Clause.getClauseKind() != OpenACCClauseKind::Gang &&
416 Clause.getClauseKind() != OpenACCClauseKind::Vector &&
417 Clause.getClauseKind() != OpenACCClauseKind::Worker &&
418 Clause.getClauseKind() != OpenACCClauseKind::Seq)
419 return false;
420 auto ProhibitedPred = llvm::IsaPred<OpenACCGangClause, OpenACCWorkerClause,
421 OpenACCVectorClause, OpenACCSeqClause>;
422
423 return DisallowSinceLastDeviceType(ProhibitedPred, Clause,
424 false);
425 }
426
427
428
429
430 bool
431 CheckValidRoutineBindNewClause(SemaOpenACC::OpenACCParsedClause &Clause) {
432 if (Clause.getDirectiveKind() != OpenACCDirectiveKind::Routine)
433 return false;
434 if (Clause.getClauseKind() != OpenACCClauseKind::Bind)
435 return false;
436
437 auto HasBindPred = llvm::IsaPred;
438 return DisallowSinceLastDeviceType(HasBindPred, Clause,
439 false);
440 }
441
442public:
443 SemaOpenACCClauseVisitor(SemaOpenACC &S,
444 ArrayRef<const OpenACCClause *> ExistingClauses)
445 : SemaRef(S), Ctx(S.getASTContext()), ExistingClauses(ExistingClauses) {}
446
447 OpenACCClause *Visit(SemaOpenACC::OpenACCParsedClause &Clause) {
448
449 if (SemaRef.DiagnoseAllowedOnceClauses(
451 Clause.getBeginLoc(), ExistingClauses) ||
455 return nullptr;
456 if (CheckValidRoutineGangWorkerVectorSeqNewClause(Clause) ||
457 CheckValidRoutineBindNewClause(Clause))
458 return nullptr;
459
461 case OpenACCClauseKind::Shortloop:
462 llvm_unreachable("Shortloop shouldn't be generated in clang");
463 case OpenACCClauseKind::Invalid:
464 return nullptr;
465#define VISIT_CLAUSE(CLAUSE_NAME) \
466 case OpenACCClauseKind::CLAUSE_NAME: \
467 return Visit##CLAUSE_NAME##Clause(Clause);
468#define CLAUSE_ALIAS(ALIAS, CLAUSE_NAME, DEPRECATED) \
469 case OpenACCClauseKind::ALIAS: \
470 if (DEPRECATED) \
471 SemaRef.Diag(Clause.getBeginLoc(), diag::warn_acc_deprecated_alias_name) \
472 << Clause.getClauseKind() << OpenACCClauseKind::CLAUSE_NAME; \
473 return Visit##CLAUSE_NAME##Clause(Clause);
474#include "clang/Basic/OpenACCClauses.def"
475 }
476 llvm_unreachable("Invalid clause kind");
477 }
478
479#define VISIT_CLAUSE(CLAUSE_NAME) \
480 OpenACCClause *Visit##CLAUSE_NAME##Clause( \
481 SemaOpenACC::OpenACCParsedClause &Clause);
482#include "clang/Basic/OpenACCClauses.def"
483};
484
485OpenACCClause *SemaOpenACCClauseVisitor::VisitDefaultClause(
487
489 return nullptr;
490
494}
495
496OpenACCClause *SemaOpenACCClauseVisitor::VisitTileClause(
497 SemaOpenACC::OpenACCParsedClause &Clause) {
498
499 if (DisallowSinceLastDeviceType(llvm::IsaPred, Clause))
500 return nullptr;
501
502 llvm::SmallVector<Expr *> NewSizeExprs;
503
504
507
509 return nullptr;
510
511 NewSizeExprs.push_back(Res.get());
512 }
513
517}
518
519OpenACCClause *SemaOpenACCClauseVisitor::VisitIfClause(
520 SemaOpenACC::OpenACCParsedClause &Clause) {
521
522
523
524
525
526
527 if (Clause.getDirectiveKind() != OpenACCDirectiveKind::Update) {
528 const auto *Itr =
529 llvm::find_if(ExistingClauses, llvm::IsaPred);
530 if (Itr != ExistingClauses.end()) {
531 SemaRef.Diag(Clause.getBeginLoc(), diag::warn_acc_if_self_conflict);
532 SemaRef.Diag((*Itr)->getBeginLoc(), diag::note_acc_previous_clause_here)
533 << (*Itr)->getClauseKind();
534 }
535 }
536
540}
541
542OpenACCClause *SemaOpenACCClauseVisitor::VisitSelfClause(
543 SemaOpenACC::OpenACCParsedClause &Clause) {
544
545
546
547 if (Clause.getDirectiveKind() == OpenACCDirectiveKind::Update)
551
552 const auto *Itr =
553 llvm::find_if(ExistingClauses, llvm::IsaPred);
554 if (Itr != ExistingClauses.end()) {
555 SemaRef.Diag(Clause.getBeginLoc(), diag::warn_acc_if_self_conflict);
556 SemaRef.Diag((*Itr)->getBeginLoc(), diag::note_acc_previous_clause_here)
557 << (*Itr)->getClauseKind();
558 }
562}
563
564OpenACCClause *SemaOpenACCClauseVisitor::VisitNumGangsClause(
565 SemaOpenACC::OpenACCParsedClause &Clause) {
566
567 if (DisallowSinceLastDeviceType(llvm::IsaPred, Clause))
568 return nullptr;
569
570
571
572
574 SemaRef.Diag(Clause.getBeginLoc(), diag::err_acc_num_gangs_num_args)
575 << 0;
576
577 unsigned MaxArgs =
578 (Clause.getDirectiveKind() == OpenACCDirectiveKind::Parallel ||
579 Clause.getDirectiveKind() == OpenACCDirectiveKind::ParallelLoop)
580 ? 3
581 : 1;
582
583
584 if (Clause.getIntExprs().size() > MaxArgs)
585 SemaRef.Diag(Clause.getBeginLoc(), diag::err_acc_num_gangs_num_args)
588
589
590
591
594 auto *GangClauseItr =
595 llvm::find_if(ExistingClauses, llvm::IsaPred);
596 auto *ReductionClauseItr =
597 llvm::find_if(ExistingClauses, llvm::IsaPred);
598
599 if (GangClauseItr != ExistingClauses.end() &&
600 ReductionClauseItr != ExistingClauses.end()) {
602 diag::err_acc_gang_reduction_numgangs_conflict)
603 << OpenACCClauseKind::Reduction << OpenACCClauseKind::Gang
604 << Clause.getDirectiveKind() << 1;
605 SemaRef.Diag((*ReductionClauseItr)->getBeginLoc(),
606 diag::note_acc_previous_clause_here)
607 << (*ReductionClauseItr)->getClauseKind();
608 SemaRef.Diag((*GangClauseItr)->getBeginLoc(),
609 diag::note_acc_previous_clause_here)
610 << (*GangClauseItr)->getClauseKind();
611 return nullptr;
612 }
613 }
614
615
616
617
618 if ((Clause.getDirectiveKind() == OpenACCDirectiveKind::Parallel ||
619 Clause.getDirectiveKind() == OpenACCDirectiveKind::ParallelLoop) &&
622 llvm::find_if(ExistingClauses, llvm::IsaPred);
623
624 if (Parallel != ExistingClauses.end()) {
626 diag::err_acc_reduction_num_gangs_conflict)
627 << 1 << Clause.getClauseKind()
628 << Clause.getDirectiveKind() << OpenACCClauseKind::Reduction;
629 SemaRef.Diag((*Parallel)->getBeginLoc(),
630 diag::note_acc_previous_clause_here)
631 << (*Parallel)->getClauseKind();
632 return nullptr;
633 }
634 }
635
636
637
638
639 if (Clause.getDirectiveKind() == OpenACCDirectiveKind::KernelsLoop) {
640 auto GangClauses = llvm::make_filter_range(
641 ExistingClauses, llvm::IsaPred);
642
643 for (auto *GC : GangClauses) {
646 diag::err_acc_num_arg_conflict_reverse)
647 << OpenACCClauseKind::NumGangs << OpenACCClauseKind::Gang
648 << 1;
649 SemaRef.Diag(GC->getBeginLoc(), diag::note_acc_previous_clause_here)
650 << GC->getClauseKind();
651 return nullptr;
652 }
653 }
654 }
655
659}
660
661OpenACCClause *SemaOpenACCClauseVisitor::VisitNumWorkersClause(
662 SemaOpenACC::OpenACCParsedClause &Clause) {
663
664 if (DisallowSinceLastDeviceType(llvm::IsaPred,
665 Clause))
666 return nullptr;
667
668
669
670
671 if (Clause.getDirectiveKind() == OpenACCDirectiveKind::KernelsLoop) {
672 auto WorkerClauses = llvm::make_filter_range(
673 ExistingClauses, llvm::IsaPred);
674
675 for (auto *WC : WorkerClauses) {
678 diag::err_acc_num_arg_conflict_reverse)
679 << OpenACCClauseKind::NumWorkers << OpenACCClauseKind::Worker
680 << 0;
681 SemaRef.Diag(WC->getBeginLoc(), diag::note_acc_previous_clause_here)
682 << WC->getClauseKind();
683 return nullptr;
684 }
685 }
686 }
687
688 assert(Clause.getIntExprs().size() == 1 &&
689 "Invalid number of expressions for NumWorkers");
693}
694
695OpenACCClause *SemaOpenACCClauseVisitor::VisitVectorLengthClause(
696 SemaOpenACC::OpenACCParsedClause &Clause) {
697
698 if (DisallowSinceLastDeviceType(llvm::IsaPred,
699 Clause))
700 return nullptr;
701
702
703
704
705 if (Clause.getDirectiveKind() == OpenACCDirectiveKind::KernelsLoop) {
706 auto VectorClauses = llvm::make_filter_range(
707 ExistingClauses, llvm::IsaPred);
708
709 for (auto *VC : VectorClauses) {
712 diag::err_acc_num_arg_conflict_reverse)
713 << OpenACCClauseKind::VectorLength << OpenACCClauseKind::Vector
714 << 0;
715 SemaRef.Diag(VC->getBeginLoc(), diag::note_acc_previous_clause_here)
716 << VC->getClauseKind();
717 return nullptr;
718 }
719 }
720 }
721
722 assert(Clause.getIntExprs().size() == 1 &&
723 "Invalid number of expressions for NumWorkers");
727}
728
729OpenACCClause *SemaOpenACCClauseVisitor::VisitAsyncClause(
730 SemaOpenACC::OpenACCParsedClause &Clause) {
731 if (DisallowSinceLastDeviceType(llvm::IsaPred, Clause))
732 return nullptr;
733
735 "Invalid number of expressions for Async");
740}
741
742OpenACCClause *SemaOpenACCClauseVisitor::VisitDeviceNumClause(
743 SemaOpenACC::OpenACCParsedClause &Clause) {
745 "Invalid number of expressions for device_num");
749}
750
751OpenACCClause *SemaOpenACCClauseVisitor::VisitDefaultAsyncClause(
752 SemaOpenACC::OpenACCParsedClause &Clause) {
754 "Invalid number of expressions for default_async");
758}
759
760OpenACCClause *SemaOpenACCClauseVisitor::VisitPrivateClause(
761 SemaOpenACC::OpenACCParsedClause &Clause) {
762
763
764
765
766 llvm::SmallVector InitRecipes;
767
768
769 for (const Expr *VarExpr : Clause.getVarList())
771
774 InitRecipes, Clause.getEndLoc());
775}
776
777OpenACCClause *SemaOpenACCClauseVisitor::VisitFirstPrivateClause(
778 SemaOpenACC::OpenACCParsedClause &Clause) {
779
780
781
782
783 llvm::SmallVector InitRecipes;
784
785
786 for (const Expr *VarExpr : Clause.getVarList())
788
791 InitRecipes, Clause.getEndLoc());
792}
793
794OpenACCClause *SemaOpenACCClauseVisitor::VisitNoCreateClause(
795 SemaOpenACC::OpenACCParsedClause &Clause) {
796
797
798
799
803}
804
805OpenACCClause *SemaOpenACCClauseVisitor::VisitPresentClause(
806 SemaOpenACC::OpenACCParsedClause &Clause) {
807
808
809
810
811
812
813 if (SemaRef.CheckDeclareClause(Clause, OpenACCModifierKind::Invalid))
814 return nullptr;
815
819}
820
821OpenACCClause *SemaOpenACCClauseVisitor::VisitHostClause(
822 SemaOpenACC::OpenACCParsedClause &Clause) {
823
824
825
826
830}
831
832OpenACCClause *SemaOpenACCClauseVisitor::VisitDeviceClause(
833 SemaOpenACC::OpenACCParsedClause &Clause) {
834
835
836
837
841}
842
843OpenACCClause *SemaOpenACCClauseVisitor::VisitCopyClause(
844 SemaOpenACC::OpenACCParsedClause &Clause) {
845
846
847
848
851
852
853
855 return nullptr;
856
860}
861
862OpenACCClause *SemaOpenACCClauseVisitor::VisitLinkClause(
863 SemaOpenACC::OpenACCParsedClause &Clause) {
864
865
866 if (SemaRef.CheckDeclareClause(Clause, OpenACCModifierKind::Invalid))
867 return nullptr;
868
870 OpenACCModifierKind::Invalid);
871
875}
876
877OpenACCClause *SemaOpenACCClauseVisitor::VisitDeviceResidentClause(
878 SemaOpenACC::OpenACCParsedClause &Clause) {
879
880
881 if (SemaRef.CheckDeclareClause(Clause, OpenACCModifierKind::Invalid))
882 return nullptr;
883
887}
888
889OpenACCClause *SemaOpenACCClauseVisitor::VisitCopyInClause(
890 SemaOpenACC::OpenACCParsedClause &Clause) {
891
892
893
894
897
898
899
901 return nullptr;
902
906}
907
908OpenACCClause *SemaOpenACCClauseVisitor::VisitCopyOutClause(
909 SemaOpenACC::OpenACCParsedClause &Clause) {
910
911
912
913
916
917
918
920 return nullptr;
921
925}
926
927OpenACCClause *SemaOpenACCClauseVisitor::VisitCreateClause(
928 SemaOpenACC::OpenACCParsedClause &Clause) {
929
930
931
932
935
936
937
939 return nullptr;
940
944}
945
946OpenACCClause *SemaOpenACCClauseVisitor::VisitAttachClause(
947 SemaOpenACC::OpenACCParsedClause &Clause) {
948
949
950 llvm::SmallVector<Expr *> VarList{Clause.getVarList()};
951 llvm::erase_if(VarList, [&](Expr *E) {
953 });
958}
959
960OpenACCClause *SemaOpenACCClauseVisitor::VisitDetachClause(
961 SemaOpenACC::OpenACCParsedClause &Clause) {
962
963
964 llvm::SmallVector<Expr *> VarList{Clause.getVarList()};
965 llvm::erase_if(VarList, [&](Expr *E) {
967 });
972}
973
974OpenACCClause *SemaOpenACCClauseVisitor::VisitDeleteClause(
975 SemaOpenACC::OpenACCParsedClause &Clause) {
976
977
978
982}
983
984OpenACCClause *SemaOpenACCClauseVisitor::VisitUseDeviceClause(
985 SemaOpenACC::OpenACCParsedClause &Clause) {
986
987
991}
992
993OpenACCClause *SemaOpenACCClauseVisitor::VisitDevicePtrClause(
994 SemaOpenACC::OpenACCParsedClause &Clause) {
995
996
997 llvm::SmallVector<Expr *> VarList{Clause.getVarList()};
998 llvm::erase_if(VarList, [&](Expr *E) {
1000 });
1001 Clause.setVarListDetails(VarList, OpenACCModifierKind::Invalid);
1002
1003
1004
1005 if (SemaRef.CheckDeclareClause(Clause, OpenACCModifierKind::Invalid))
1006 return nullptr;
1007
1011}
1012
1013OpenACCClause *SemaOpenACCClauseVisitor::VisitWaitClause(
1014 SemaOpenACC::OpenACCParsedClause &Clause) {
1018}
1019
1020OpenACCClause *SemaOpenACCClauseVisitor::VisitDeviceTypeClause(
1021 SemaOpenACC::OpenACCParsedClause &Clause) {
1022
1023
1024
1025
1026
1027 if ((Clause.getDirectiveKind() == OpenACCDirectiveKind::Init ||
1028 Clause.getDirectiveKind() == OpenACCDirectiveKind::Shutdown ||
1032 diag::err_acc_device_type_multiple_archs)
1034 return nullptr;
1035 }
1036
1037
1038
1039
1040
1041 const std::array<llvm::StringLiteral, 6> ValidValues{
1042 "default", "nvidia", "acc_device_nvidia", "radeon", "host", "multicore"};
1043
1044
1045
1046 std::string ValidValuesString =
1047 "'default', 'nvidia', 'acc_device_nvidia', 'radeon', 'host', 'multicore'";
1048
1049 llvm::SmallVector Architectures{
1051
1052
1053
1054
1055 bool Diagnosed = false;
1057
1058 if (.getIdentifierInfo())
1059 return false;
1060 return llvm::find_if(ValidValues, [&](StringRef RHS) {
1061 return Arch.getIdentifierInfo()->getName().equals_insensitive(RHS);
1062 }) == ValidValues.end();
1063 };
1064
1066 Diagnosed = SemaRef.Diag(Arch.getLoc(), diag::err_acc_invalid_default_type)
1068 << ValidValuesString;
1069 };
1070
1071
1072
1073
1074
1075 llvm::for_each(llvm::make_filter_range(Architectures, FilterPred), Diagnose);
1076 if (Diagnosed)
1077 llvm::erase_if(Architectures, FilterPred);
1078
1081 Architectures, Clause.getEndLoc());
1082}
1083
1084OpenACCClause *SemaOpenACCClauseVisitor::VisitAutoClause(
1085 SemaOpenACC::OpenACCParsedClause &Clause) {
1086
1089}
1090
1091OpenACCClause *SemaOpenACCClauseVisitor::VisitNoHostClause(
1092 SemaOpenACC::OpenACCParsedClause &Clause) {
1095}
1096
1097OpenACCClause *SemaOpenACCClauseVisitor::VisitIndependentClause(
1098 SemaOpenACC::OpenACCParsedClause &Clause) {
1099
1102}
1103
1104ExprResult CheckGangStaticExpr(SemaOpenACC &S, Expr *E) {
1106 return E;
1107 return S.ActOnIntExpr(OpenACCDirectiveKind::Invalid, OpenACCClauseKind::Gang,
1109}
1110
1112 return DK == OpenACCDirectiveKind::Loop &&
1113 AssocKind == OpenACCDirectiveKind::Invalid;
1114}
1115
1117 return DK == OpenACCDirectiveKind::Loop &&
1118 AssocKind != OpenACCDirectiveKind::Invalid;
1119}
1120
1125 << GK << CK << IsOrphanLoop(DK, AssocKind) << DK
1126 << HasAssocKind(DK, AssocKind) << AssocKind;
1128}
1129ExprResult DiagIntArgInvalid(SemaOpenACC &S, Expr *E, StringRef TagKind,
1133 << TagKind << CK << IsOrphanLoop(DK, AssocKind) << DK
1134 << HasAssocKind(DK, AssocKind) << AssocKind;
1136}
1137
1138ExprResult CheckGangDimExpr(SemaOpenACC &S, Expr *E) {
1139
1140
1141
1142
1143
1144
1145
1146 if (!E)
1149 OpenACCClauseKind::Gang, E->getBeginLoc(), E);
1150
1152 return Res;
1153
1155 return Res;
1156
1157 std::optionalllvm::APSInt ICE =
1159
1160 if (!ICE || *ICE <= 0 || ICE > 3) {
1162 << ICE.has_value() << ICE.value_or(llvm::APSInt{}).getExtValue();
1164 }
1165
1168}
1169
1173 switch (GK) {
1174 case OpenACCGangKind::Static:
1175 return CheckGangStaticExpr(S, E);
1176 case OpenACCGangKind::Num:
1177
1178
1179
1180 return DiagIntArgInvalid(S, E, GK, OpenACCClauseKind::Gang, DK, AssocKind);
1181 case OpenACCGangKind::Dim:
1182 return CheckGangDimExpr(S, E);
1183 }
1184 llvm_unreachable("Unknown gang kind in gang parallel check");
1185}
1186
1187ExprResult CheckGangKernelsExpr(SemaOpenACC &S,
1188 ArrayRef<const OpenACCClause *> ExistingClauses,
1192 switch (GK) {
1193
1194
1195
1196 case OpenACCGangKind::Dim:
1197 return DiagIntArgInvalid(S, E, GK, OpenACCClauseKind::Gang, DK, AssocKind);
1198 case OpenACCGangKind::Num: {
1199
1200
1201
1202
1203
1204
1205
1206
1207
1209 ? ExistingClauses
1211
1212 const auto *Itr =
1213 llvm::find_if(Collection, llvm::IsaPred);
1214
1215 if (Itr != Collection.end()) {
1216 S.Diag(E->getBeginLoc(), diag::err_acc_num_arg_conflict)
1217 << "num" << OpenACCClauseKind::Gang << DK
1218 << HasAssocKind(DK, AssocKind) << AssocKind
1219 << OpenACCClauseKind::NumGangs;
1220
1221 S.Diag((*Itr)->getBeginLoc(), diag::note_acc_previous_clause_here)
1222 << (*Itr)->getClauseKind();
1224 }
1226 }
1227 case OpenACCGangKind::Static:
1228 return CheckGangStaticExpr(S, E);
1229 }
1230 llvm_unreachable("Unknown gang kind in gang kernels check");
1231}
1232
1236 switch (GK) {
1237
1238
1239 case OpenACCGangKind::Dim:
1240 case OpenACCGangKind::Num:
1241 return DiagIntArgInvalid(S, E, GK, OpenACCClauseKind::Gang, DK, AssocKind);
1242 case OpenACCGangKind::Static:
1243 return CheckGangStaticExpr(S, E);
1244 }
1245 llvm_unreachable("Unknown gang kind in gang serial check");
1246}
1247
1251 switch (GK) {
1252
1253 case OpenACCGangKind::Num:
1254 case OpenACCGangKind::Static:
1255 return DiagIntArgInvalid(S, E, GK, OpenACCClauseKind::Gang, DK, AssocKind);
1256 case OpenACCGangKind::Dim:
1257 return CheckGangDimExpr(S, E);
1258 }
1259 llvm_unreachable("Unknown gang kind in gang serial check");
1260}
1261
1262OpenACCClause *SemaOpenACCClauseVisitor::VisitVectorClause(
1263 SemaOpenACC::OpenACCParsedClause &Clause) {
1264 if (DiagGangWorkerVectorSeqConflict(Clause))
1265 return nullptr;
1266
1267 Expr *IntExpr =
1269 if (IntExpr) {
1271 default:
1272 llvm_unreachable("Invalid directive kind for this clause");
1273 case OpenACCDirectiveKind::Loop:
1275 case OpenACCDirectiveKind::Invalid:
1276 case OpenACCDirectiveKind::Parallel:
1277 case OpenACCDirectiveKind::ParallelLoop:
1278
1279 break;
1280 case OpenACCDirectiveKind::Serial:
1281 case OpenACCDirectiveKind::SerialLoop:
1282
1283
1284 DiagIntArgInvalid(SemaRef, IntExpr, "length", OpenACCClauseKind::Vector,
1287 IntExpr = nullptr;
1288 break;
1289 case OpenACCDirectiveKind::Kernels:
1290 case OpenACCDirectiveKind::KernelsLoop: {
1291 const auto *Itr =
1293 llvm::IsaPred);
1295 SemaRef.Diag(IntExpr->getBeginLoc(), diag::err_acc_num_arg_conflict)
1296 << "length" << OpenACCClauseKind::Vector
1301 << OpenACCClauseKind::VectorLength;
1302 SemaRef.Diag((*Itr)->getBeginLoc(),
1303 diag::note_acc_previous_clause_here)
1304 << (*Itr)->getClauseKind();
1305
1306 IntExpr = nullptr;
1307 }
1308 break;
1309 }
1310 default:
1311 llvm_unreachable("Non compute construct in active compute construct");
1312 }
1313 break;
1314 case OpenACCDirectiveKind::KernelsLoop: {
1315 const auto *Itr = llvm::find_if(ExistingClauses,
1316 llvm::IsaPred);
1317 if (Itr != ExistingClauses.end()) {
1318 SemaRef.Diag(IntExpr->getBeginLoc(), diag::err_acc_num_arg_conflict)
1319 << "length" << OpenACCClauseKind::Vector
1324 << OpenACCClauseKind::VectorLength;
1325 SemaRef.Diag((*Itr)->getBeginLoc(), diag::note_acc_previous_clause_here)
1326 << (*Itr)->getClauseKind();
1327
1328 IntExpr = nullptr;
1329 }
1330 break;
1331 }
1332 case OpenACCDirectiveKind::SerialLoop:
1333 case OpenACCDirectiveKind::Routine:
1334 DiagIntArgInvalid(SemaRef, IntExpr, "length", OpenACCClauseKind::Vector,
1337 IntExpr = nullptr;
1338 break;
1339 case OpenACCDirectiveKind::ParallelLoop:
1340 break;
1341 case OpenACCDirectiveKind::Invalid:
1342
1343
1344
1345
1346 break;
1347 }
1348 }
1349
1350 if (Clause.getDirectiveKind() == OpenACCDirectiveKind::Loop) {
1351
1352
1353
1355
1356
1357 SemaRef.Diag(Clause.getBeginLoc(), diag::err_acc_clause_in_clause_region)
1358 << OpenACCClauseKind::Vector << OpenACCClauseKind::Vector
1359 << 0;
1361 diag::note_acc_previous_clause_here)
1362 << "vector";
1363 return nullptr;
1364 }
1365 }
1366
1370}
1371
1372OpenACCClause *SemaOpenACCClauseVisitor::VisitWorkerClause(
1373 SemaOpenACC::OpenACCParsedClause &Clause) {
1374 if (DiagGangWorkerVectorSeqConflict(Clause))
1375 return nullptr;
1376
1377 Expr *IntExpr =
1379
1380 if (IntExpr) {
1382 default:
1383 llvm_unreachable("Invalid directive kind for this clause");
1384 case OpenACCDirectiveKind::Invalid:
1385
1386
1387
1388
1389
1390
1391 break;
1392 case OpenACCDirectiveKind::Loop:
1394 case OpenACCDirectiveKind::Invalid:
1395 case OpenACCDirectiveKind::ParallelLoop:
1396 case OpenACCDirectiveKind::SerialLoop:
1397 case OpenACCDirectiveKind::Parallel:
1398 case OpenACCDirectiveKind::Serial:
1399 DiagIntArgInvalid(SemaRef, IntExpr, OpenACCGangKind::Num,
1402 IntExpr = nullptr;
1403 break;
1404 case OpenACCDirectiveKind::KernelsLoop:
1405 case OpenACCDirectiveKind::Kernels: {
1406 const auto *Itr =
1408 llvm::IsaPred);
1410 SemaRef.Diag(IntExpr->getBeginLoc(), diag::err_acc_num_arg_conflict)
1411 << "num" << OpenACCClauseKind::Worker << Clause.getDirectiveKind()
1415 << OpenACCClauseKind::NumWorkers;
1416 SemaRef.Diag((*Itr)->getBeginLoc(),
1417 diag::note_acc_previous_clause_here)
1418 << (*Itr)->getClauseKind();
1419
1420 IntExpr = nullptr;
1421 }
1422 break;
1423 }
1424 default:
1425 llvm_unreachable("Non compute construct in active compute construct");
1426 }
1427 break;
1428 case OpenACCDirectiveKind::ParallelLoop:
1429 case OpenACCDirectiveKind::SerialLoop:
1430 case OpenACCDirectiveKind::Routine:
1431 DiagIntArgInvalid(SemaRef, IntExpr, OpenACCGangKind::Num,
1434 IntExpr = nullptr;
1435 break;
1436 case OpenACCDirectiveKind::KernelsLoop: {
1437 const auto *Itr = llvm::find_if(ExistingClauses,
1438 llvm::IsaPred);
1439 if (Itr != ExistingClauses.end()) {
1440 SemaRef.Diag(IntExpr->getBeginLoc(), diag::err_acc_num_arg_conflict)
1441 << "num" << OpenACCClauseKind::Worker << Clause.getDirectiveKind()
1445 << OpenACCClauseKind::NumWorkers;
1446 SemaRef.Diag((*Itr)->getBeginLoc(), diag::note_acc_previous_clause_here)
1447 << (*Itr)->getClauseKind();
1448
1449 IntExpr = nullptr;
1450 }
1451 }
1452 }
1453 }
1454
1455 if (Clause.getDirectiveKind() == OpenACCDirectiveKind::Loop) {
1456
1457
1458
1460
1461
1462 SemaRef.Diag(Clause.getBeginLoc(), diag::err_acc_clause_in_clause_region)
1463 << OpenACCClauseKind::Worker << OpenACCClauseKind::Worker
1464 << 0;
1466 diag::note_acc_previous_clause_here)
1467 << "worker";
1468 return nullptr;
1469 }
1470
1471
1472
1473
1475
1476
1477 SemaRef.Diag(Clause.getBeginLoc(), diag::err_acc_clause_in_clause_region)
1478 << OpenACCClauseKind::Worker << OpenACCClauseKind::Vector
1479 << 0;
1481 diag::note_acc_previous_clause_here)
1482 << "vector";
1483 return nullptr;
1484 }
1485 }
1486
1490}
1491
1492OpenACCClause *SemaOpenACCClauseVisitor::VisitGangClause(
1493 SemaOpenACC::OpenACCParsedClause &Clause) {
1494
1495 if (DiagGangWorkerVectorSeqConflict(Clause))
1496 return nullptr;
1497
1498
1499
1500
1501 if ((Clause.getDirectiveKind() == OpenACCDirectiveKind::Loop &&
1503 OpenACCDirectiveKind::Invalid) ||
1505
1506 auto ActiveComputeConstructContainer =
1508 ? ExistingClauses
1510 auto *NumGangsClauseItr = llvm::find_if(
1511 ActiveComputeConstructContainer, llvm::IsaPred);
1512
1513 if (NumGangsClauseItr != ActiveComputeConstructContainer.end() &&
1515 1) {
1516 auto *ReductionClauseItr =
1517 llvm::find_if(ExistingClauses, llvm::IsaPred);
1518
1519 if (ReductionClauseItr != ExistingClauses.end()) {
1521 diag::err_acc_gang_reduction_numgangs_conflict)
1522 << OpenACCClauseKind::Gang << OpenACCClauseKind::Reduction
1525 SemaRef.Diag((*ReductionClauseItr)->getBeginLoc(),
1526 diag::note_acc_previous_clause_here)
1527 << (*ReductionClauseItr)->getClauseKind();
1528 SemaRef.Diag((*NumGangsClauseItr)->getBeginLoc(),
1529 diag::note_acc_previous_clause_here)
1530 << (*NumGangsClauseItr)->getClauseKind();
1531 return nullptr;
1532 }
1533 }
1534 }
1535
1536 llvm::SmallVector GangKinds;
1537 llvm::SmallVector<Expr *> IntExprs;
1538
1539
1540
1541 SourceLocation ExistingElemLoc[3];
1542
1543 for (unsigned I = 0; I < Clause.getIntExprs().size(); ++I) {
1548
1550 continue;
1551
1552
1553
1554 if (ExistingElemLoc[static_cast<unsigned>(GK)].isValid()) {
1555 SemaRef.Diag(ER.get()->getBeginLoc(), diag::err_acc_gang_multiple_elt)
1556 << static_cast<unsigned>(GK);
1557 SemaRef.Diag(ExistingElemLoc[static_cast<unsigned>(GK)],
1558 diag::note_acc_previous_expr_here);
1559 continue;
1560 }
1561
1562 ExistingElemLoc[static_cast<unsigned>(GK)] = ER.get()->getBeginLoc();
1563 GangKinds.push_back(GK);
1564 IntExprs.push_back(ER.get());
1565 }
1566
1567 if (Clause.getDirectiveKind() == OpenACCDirectiveKind::Loop) {
1568
1569
1570
1571
1573
1574
1575 SemaRef.Diag(Clause.getBeginLoc(), diag::err_acc_clause_in_clause_region)
1576 << OpenACCClauseKind::Gang << OpenACCClauseKind::Gang
1577 << 1
1580 diag::note_acc_previous_clause_here)
1581 << "gang";
1582 return nullptr;
1583 }
1584
1585
1586
1587
1589
1590
1591 SemaRef.Diag(Clause.getBeginLoc(), diag::err_acc_clause_in_clause_region)
1592 << OpenACCClauseKind::Gang << OpenACCClauseKind::Worker
1593 << 0;
1595 diag::note_acc_previous_clause_here)
1596 << "worker";
1597 return nullptr;
1598 }
1599
1600
1601
1602
1604
1605
1606 SemaRef.Diag(Clause.getBeginLoc(), diag::err_acc_clause_in_clause_region)
1607 << OpenACCClauseKind::Gang << OpenACCClauseKind::Vector
1608 << 0;
1610 diag::note_acc_previous_clause_here)
1611 << "vector";
1612 return nullptr;
1613 }
1614 }
1615
1618 GangKinds, IntExprs, Clause.getEndLoc());
1619}
1620
1621OpenACCClause *SemaOpenACCClauseVisitor::VisitFinalizeClause(
1622 SemaOpenACC::OpenACCParsedClause &Clause) {
1623
1624
1627}
1628
1629OpenACCClause *SemaOpenACCClauseVisitor::VisitIfPresentClause(
1630 SemaOpenACC::OpenACCParsedClause &Clause) {
1631
1632
1635}
1636
1637OpenACCClause *SemaOpenACCClauseVisitor::VisitSeqClause(
1638 SemaOpenACC::OpenACCParsedClause &Clause) {
1639
1640
1641
1642 if (Clause.getDirectiveKind() == OpenACCDirectiveKind::Loop ||
1644 const auto *Itr = llvm::find_if(
1645 ExistingClauses, llvm::IsaPred<OpenACCGangClause, OpenACCVectorClause,
1646 OpenACCWorkerClause>);
1647 if (Itr != ExistingClauses.end()) {
1648 SemaRef.Diag(Clause.getBeginLoc(), diag::err_acc_clause_cannot_combine)
1649 << Clause.getClauseKind() << (*Itr)->getClauseKind()
1651 SemaRef.Diag((*Itr)->getBeginLoc(), diag::note_acc_previous_clause_here)
1652 << (*Itr)->getClauseKind();
1653 return nullptr;
1654 }
1655 }
1656
1659}
1660
1661OpenACCClause *SemaOpenACCClauseVisitor::VisitReductionClause(
1662 SemaOpenACC::OpenACCParsedClause &Clause) {
1663
1664
1665
1666 if ((Clause.getDirectiveKind() == OpenACCDirectiveKind::Loop &&
1668 OpenACCDirectiveKind::Invalid) ||
1670
1671 auto ActiveComputeConstructContainer =
1673 ? ExistingClauses
1675 auto *NumGangsClauseItr = llvm::find_if(
1676 ActiveComputeConstructContainer, llvm::IsaPred);
1677
1678 if (NumGangsClauseItr != ActiveComputeConstructContainer.end() &&
1680 1) {
1681 auto *GangClauseItr =
1682 llvm::find_if(ExistingClauses, llvm::IsaPred);
1683
1684 if (GangClauseItr != ExistingClauses.end()) {
1686 diag::err_acc_gang_reduction_numgangs_conflict)
1687 << OpenACCClauseKind::Reduction << OpenACCClauseKind::Gang
1690 SemaRef.Diag((*GangClauseItr)->getBeginLoc(),
1691 diag::note_acc_previous_clause_here)
1692 << (*GangClauseItr)->getClauseKind();
1693 SemaRef.Diag((*NumGangsClauseItr)->getBeginLoc(),
1694 diag::note_acc_previous_clause_here)
1695 << (*NumGangsClauseItr)->getClauseKind();
1696 return nullptr;
1697 }
1698 }
1699 }
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721 if (Clause.getDirectiveKind() == OpenACCDirectiveKind::Parallel ||
1722 Clause.getDirectiveKind() == OpenACCDirectiveKind::ParallelLoop) {
1723 auto NumGangsClauses = llvm::make_filter_range(
1724 ExistingClauses, llvm::IsaPred);
1725
1726 for (auto *NGC : NumGangsClauses) {
1727 unsigned NumExprs =
1729
1730 if (NumExprs > 1) {
1732 diag::err_acc_reduction_num_gangs_conflict)
1733 << 0 << Clause.getClauseKind()
1734 << Clause.getDirectiveKind() << OpenACCClauseKind::NumGangs;
1735 SemaRef.Diag(NGC->getBeginLoc(), diag::note_acc_previous_clause_here)
1736 << NGC->getClauseKind();
1737 return nullptr;
1738 }
1739 }
1740 }
1741
1742 SmallVector<Expr *> ValidVars;
1743 SmallVector Recipes;
1744
1745 for (Expr *Var : Clause.getVarList()) {
1748
1750 ValidVars.push_back(Res.get());
1751
1754 }
1755 }
1756
1760 Recipes,
1762}
1763
1764OpenACCClause *SemaOpenACCClauseVisitor::VisitCollapseClause(
1765 SemaOpenACC::OpenACCParsedClause &Clause) {
1766
1767 if (DisallowSinceLastDeviceType(llvm::IsaPred, Clause))
1768 return nullptr;
1769
1771
1773 return nullptr;
1774
1778}
1779
1780OpenACCClause *SemaOpenACCClauseVisitor::VisitBindClause(
1781 SemaOpenACC::OpenACCParsedClause &Clause) {
1782
1783 if (std::holds_alternative<StringLiteral *>(Clause.getBindDetails()))
1790}
1791
1792
1793
1794bool areVarsEqual(Expr *VarExpr1, Expr *VarExpr2) {
1797 return false;
1798
1801
1802
1803
1804
1805
1807 auto *Expr2AS = dyn_cast(VarExpr2);
1808 if (!Expr2AS)
1809 return false;
1810
1812
1813 if (!areVarsEqual(Expr1AS->getBase(), Expr2AS->getBase()))
1814 return false;
1815
1816
1817 return true;
1818 }
1819
1820
1822 auto *Expr2AS = dyn_cast(VarExpr2);
1823 if (!Expr2AS)
1824 return false;
1825
1827
1828 if (!areVarsEqual(Expr1AS->getBase(), Expr2AS->getBase()))
1829 return false;
1830
1831
1832
1833
1834 return true;
1835 }
1836
1837
1839 auto *Expr2DRE = dyn_cast(VarExpr2);
1840 if (!Expr2DRE)
1841 return false;
1842
1844
1845 return Expr1DRE->getDecl()->getMostRecentDecl() ==
1846 Expr2DRE->getDecl()->getMostRecentDecl();
1847 }
1848
1849 llvm_unreachable("Unknown variable type encountered");
1850}
1851}
1852
1853OpenACCClause *
1857 return nullptr;
1858
1859 if (DiagnoseAllowedClauses(Clause.getDirectiveKind(), Clause.getClauseKind(),
1860 Clause.getBeginLoc()))
1861 return nullptr;
1862
1863 if (const auto *DevTypeClause = llvm::find_if(
1864 ExistingClauses, llvm::IsaPred);
1865 DevTypeClause != ExistingClauses.end()) {
1866 if (checkValidAfterDeviceType(
1868 return nullptr;
1869 }
1870
1871 SemaOpenACCClauseVisitor Visitor{*this, ExistingClauses};
1873 assert(( || Result->getClauseKind() == Clause.getClauseKind()) &&
1874 "Created wrong clause?");
1875
1877}
1878
1881
1883
1884
1885
1886
1890
1891
1892
1893
1894 if (CurType.isNull())
1895 return false;
1896
1897
1898
1899
1900 if (auto *AT = getASTContext().getAsArrayType(CurType)) {
1901
1902
1904 << diag::OACCReductionArray::ArrayTy << CurType;
1905 Notes.push_back({VarLoc, PD});
1906 CurType = AT->getElementType();
1907 }
1908
1909 auto IsValidMemberOfComposite = [](QualType Ty) {
1910 return !Ty->isAnyComplexType() &&
1911 (Ty->isDependentType() ||
1912 (Ty->isScalarType() && !Ty->isPointerType()));
1913 };
1914
1916 Diag(Loc, PD);
1917
1918 for (auto [Loc, PD] : Notes)
1919 Diag(Loc, PD);
1920
1921 return Diag(VarLoc, diag::note_acc_reduction_type_summary);
1922 };
1923
1924
1925 if (IsValidMemberOfComposite(CurType)) {
1926
1928 if (!RD->isStruct() && !RD->isClass())
1929 return EmitDiags(VarLoc, PDiag(diag::err_acc_reduction_type)
1930 << RD
1931 << diag::OACCReductionTy::NotClassStruct);
1932
1933 if (!RD->isCompleteDefinition())
1934 return EmitDiags(VarLoc, PDiag(diag::err_acc_reduction_type)
1935 << RD << diag::OACCReductionTy::NotComplete);
1936
1937 if (const auto *CXXRD = dyn_cast(RD);
1938 CXXRD && !CXXRD->isAggregate())
1939 return EmitDiags(VarLoc, PDiag(diag::err_acc_reduction_type)
1940 << CXXRD << diag::OACCReductionTy::NotAgg);
1941
1942 for (FieldDecl *FD : RD->fields()) {
1943 if (!IsValidMemberOfComposite(FD->getType())) {
1945 PDiag(diag::note_acc_reduction_member_of_composite)
1946 << FD->getName() << RD->getName();
1947 Notes.push_back({FD->getBeginLoc(), PD});
1948
1949 return EmitDiags(VarLoc, PDiag(diag::err_acc_reduction_type)
1950 << FD->getType()
1951 << diag::OACCReductionTy::MemberNotScalar);
1952 }
1953 }
1954 } else {
1955 return EmitDiags(VarLoc, PDiag(diag::err_acc_reduction_type)
1956 << CurType
1957 << diag::OACCReductionTy::NotScalar);
1958 }
1959
1960 return false;
1961}
1962
1963
1964
1965
1966
1967
1968
1969
1972 Expr *VarExpr) {
1973
1974
1976
1979
1980
1981
1983
1985 if (RClause->getReductionOp() == ReductionOp)
1986 break;
1987
1988 for (Expr *OldVarExpr : RClause->getVarList()) {
1989 if (OldVarExpr->isInstantiationDependent())
1990 continue;
1991
1992 if (areVarsEqual(VarExpr, OldVarExpr)) {
1993 Diag(VarExpr->getExprLoc(), diag::err_reduction_op_mismatch)
1994 << ReductionOp << RClause->getReductionOp();
1995 Diag(OldVarExpr->getExprLoc(), diag::note_acc_previous_clause_here)
1996 << RClause->getClauseKind();
1998 }
1999 }
2000 }
2001 }
2002
2003 return VarExpr;
2004}
2005
2007 if (!SizeExpr)
2009
2012 "size argument non integer?");
2013
2014
2018
2019 std::optionalllvm::APSInt ICE =
2021
2022
2023
2024 if (!ICE || *ICE <= 0) {
2025 Diag(SizeExpr->getBeginLoc(), diag::err_acc_size_expr_value)
2026 << ICE.has_value() << ICE.value_or(llvm::APSInt{}).getExtValue();
2028 }
2029
2032}
2033
2035 if (!LoopCount)
2037
2040 "Loop argument non integer?");
2041
2042
2045
2046 std::optionalllvm::APSInt ICE =
2048
2049
2050
2051
2052 if (!ICE || *ICE <= 0) {
2053 Diag(LoopCount->getBeginLoc(), diag::err_acc_collapse_loop_count)
2054 << ICE.has_value() << ICE.value_or(llvm::APSInt{}).getExtValue();
2056 }
2057
2060}
2061
2066
2067
2068
2069
2070 switch (DK) {
2072 return CheckGangParallelExpr(*this, DK, ActiveComputeConstructInfo.Kind, GK,
2073 E);
2075 return CheckGangSerialExpr(*this, DK, ActiveComputeConstructInfo.Kind, GK,
2076 E);
2078 return CheckGangKernelsExpr(*this, ExistingClauses, DK,
2079 ActiveComputeConstructInfo.Kind, GK, E);
2081 return CheckGangRoutineExpr(*this, DK, ActiveComputeConstructInfo.Kind, GK,
2082 E);
2084 switch (ActiveComputeConstructInfo.Kind) {
2088 return CheckGangParallelExpr(*this, DK, ActiveComputeConstructInfo.Kind,
2089 GK, E);
2092 return CheckGangSerialExpr(*this, DK, ActiveComputeConstructInfo.Kind, GK,
2093 E);
2096 return CheckGangKernelsExpr(*this, ExistingClauses, DK,
2097 ActiveComputeConstructInfo.Kind, GK, E);
2098 default:
2099 llvm_unreachable("Non compute construct in active compute construct?");
2100 }
2102
2103
2104
2105
2107 default:
2108 llvm_unreachable("Invalid directive kind for a Gang clause");
2109 }
2110 llvm_unreachable("Compute construct directive not handled?");
2111}
2112
2119
2121
2122
2123
2124 const auto *ReductionItr =
2125 llvm::find_if(ExistingClauses, llvm::IsaPred);
2126
2127 if (ReductionItr != ExistingClauses.end()) {
2128 const auto GangZip = llvm::zip_equal(GangKinds, IntExprs);
2129 const auto GangItr = llvm::find_if(GangZip, [](const auto &Tuple) {
2131 });
2132
2133 if (GangItr != GangZip.end()) {
2134 const Expr *DimExpr = std::get<1>(*GangItr);
2135
2138 "Improperly formed gang argument");
2139 if (const auto *DimVal = dyn_cast(DimExpr);
2140 DimVal && DimVal->getResultAsAPSInt() > 1) {
2141 Diag(DimVal->getBeginLoc(), diag::err_acc_gang_reduction_conflict)
2142 << 0 << DirKind;
2143 Diag((*ReductionItr)->getBeginLoc(),
2144 diag::note_acc_previous_clause_here)
2145 << (*ReductionItr)->getClauseKind();
2146 return nullptr;
2147 }
2148 }
2149 }
2150 }
2151
2153 GangKinds, IntExprs, EndLoc);
2154}
2155
2164
2165
2166
2167 const auto GangClauses = llvm::make_filter_range(
2168 ExistingClauses, llvm::IsaPred);
2169
2170 for (auto *GC : GangClauses) {
2172 for (unsigned I = 0; I < GangClause->getNumExprs(); ++I) {
2173 std::pair<OpenACCGangKind, const Expr *> EPair = GangClause->getExpr(I);
2175 continue;
2176
2177 if (const auto *DimVal = dyn_cast(EPair.second);
2178 DimVal && DimVal->getResultAsAPSInt() > 1) {
2179 Diag(BeginLoc, diag::err_acc_gang_reduction_conflict)
2180 << 1 << DirectiveKind;
2181 Diag(GangClause->getBeginLoc(), diag::note_acc_previous_clause_here)
2182 << GangClause->getClauseKind();
2183 return nullptr;
2184 }
2185 }
2186 }
2187 }
2188
2190 getASTContext(), BeginLoc, LParenLoc, ReductionOp, Vars, Recipes, EndLoc);
2191 return Ret;
2192}
2193
2197
2198
2199
2202
2204
2205 for (Expr *VarExpr : VarExprs) {
2207 NewVarList.push_back(VarExpr);
2208 continue;
2209 }
2210
2211
2212
2213
2214
2216 NewVarList.push_back(VarExpr);
2217 continue;
2218 }
2219
2220 Expr *OrigExpr = VarExpr;
2221
2223 if (auto *ASE = dyn_cast(VarExpr))
2224 VarExpr = ASE->getBase()->IgnoreParenImpCasts();
2225 else
2226 VarExpr =
2228 }
2229
2231 const VarDecl *Var = dyn_cast(DRE->getDecl());
2232
2234 Diag(VarExpr->getBeginLoc(), diag::err_acc_link_not_extern);
2235 else
2236 NewVarList.push_back(OrigExpr);
2237 }
2238
2239 return NewVarList;
2240}
2243
2245 return false;
2246
2248
2249
2250
2251 bool IsSpecialClause =
2257
2258
2259
2260
2261
2263 return Diag(Clause.getBeginLoc(), diag::err_acc_declare_clause_at_global)
2264 << Clause.getClauseKind();
2265 }
2266
2269 for (Expr *VarExpr : Clause.getVarList()) {
2271
2272
2273 } else if (const auto *MemExpr = dyn_cast(VarExpr)) {
2275 cast(MemExpr->getMemberDecl()->getCanonicalDecl());
2276 CurDecl = FD;
2277
2278 if (removeLinkageSpecDC(
2280 Diag(MemExpr->getBeginLoc(), diag::err_acc_declare_same_scope)
2281 << Clause.getClauseKind();
2282 continue;
2283 }
2284 } else {
2285
2286 const Expr *VarExprTemp = VarExpr;
2287
2288 while (const auto *ASE = dyn_cast(VarExprTemp))
2290
2292 if (const auto *Var = dyn_cast(DRE->getDecl())) {
2294
2295
2296
2297
2298
2299
2300
2301
2302 if (removeLinkageSpecDC(
2303 Var->getLexicalDeclContext()->getPrimaryContext()) != DC) {
2304 Diag(VarExpr->getBeginLoc(), diag::err_acc_declare_same_scope)
2305 << Clause.getClauseKind();
2306 continue;
2307 }
2308
2309
2310
2311
2312 if (!IsSpecialClause && Var->hasExternalStorage()) {
2313 Diag(VarExpr->getBeginLoc(), diag::err_acc_declare_extern)
2314 << Clause.getClauseKind();
2315 continue;
2316 }
2317 }
2318
2319
2320
2321
2322
2323 if (CurDecl) {
2324 auto [Itr, Inserted] = DeclareVarReferences.try_emplace(CurDecl);
2325 if (!Inserted) {
2326 Diag(VarExpr->getBeginLoc(), diag::err_acc_multiple_references)
2327 << Clause.getClauseKind();
2328 Diag(Itr->second, diag::note_acc_previous_reference);
2329 continue;
2330 } else {
2331 Itr->second = VarExpr->getBeginLoc();
2332 }
2333 }
2334 }
2335 FilteredVarList.push_back(VarExpr);
2336 }
2337
2338 Clause.setVarListDetails(FilteredVarList, Mods);
2339 return false;
2340}
Defines the C++ Decl subclasses, other than those for templates (found in DeclTemplate....
Defines the clang::Expr interface and subclasses for C++ expressions.
static DiagnosticBuilder Diag(DiagnosticsEngine *Diags, const LangOptions &Features, FullSourceLoc TokLoc, const char *TokBegin, const char *TokRangeBegin, const char *TokRangeEnd, unsigned DiagID)
Produce a diagnostic highlighting some portion of a literal.
Defines some OpenACC-specific enums and functions.
This file declares semantic analysis for OpenACC constructs and clauses.
APValue - This class implements a discriminated union of [uninitialized] [APSInt] [APFloat],...
static ConstantExpr * Create(const ASTContext &Context, Expr *E, const APValue &Result)
DeclContext - This is used only as base class of specific decl types that can act as declaration cont...
DeclContext * getParent()
getParent - Returns the containing DeclContext.
DeclContext * getPrimaryContext()
getPrimaryContext - There may be many different declarations of the same entity (including forward de...
DeclContext * getLexicalDeclContext()
getLexicalDeclContext - The declaration context where this Decl was lexically declared (LexicalDC).
virtual Decl * getCanonicalDecl()
Retrieves the "canonical" declaration of the given declaration.
Represents a ValueDecl that came out of a declarator.
This represents one expression.
Expr * IgnoreParenCasts() LLVM_READONLY
Skip past any parentheses and casts which might surround this expression until reaching a fixed point...
Expr * IgnoreParenImpCasts() LLVM_READONLY
Skip past any parentheses and implicit casts which might surround this expression until reaching a fi...
std::optional< llvm::APSInt > getIntegerConstantExpr(const ASTContext &Ctx) const
isIntegerConstantExpr - Return the value if this expression is a valid integer constant expression.
bool isInstantiationDependent() const
Whether this expression is instantiation-dependent, meaning that it depends in some way on.
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
Represents a member of a struct/union/class.
StringRef getName() const
Return the actual identifier string.
IdentifierInfo * getIdentifierInfo() const
static OpenACCAsyncClause * Create(const ASTContext &C, SourceLocation BeginLoc, SourceLocation LParenLoc, Expr *IntExpr, SourceLocation EndLoc)
static OpenACCAttachClause * Create(const ASTContext &C, SourceLocation BeginLoc, SourceLocation LParenLoc, ArrayRef< Expr * > VarList, SourceLocation EndLoc)
static OpenACCAutoClause * Create(const ASTContext &Ctx, SourceLocation BeginLoc, SourceLocation EndLoc)
static OpenACCBindClause * Create(const ASTContext &C, SourceLocation BeginLoc, SourceLocation LParenLoc, const IdentifierInfo *ID, SourceLocation EndLoc)
This is the base type for all OpenACC Clauses.
OpenACCClauseKind getClauseKind() const
SourceLocation getBeginLoc() const
static OpenACCCollapseClause * Create(const ASTContext &C, SourceLocation BeginLoc, SourceLocation LParenLoc, bool HasForce, Expr *LoopCount, SourceLocation EndLoc)
static OpenACCCopyClause * Create(const ASTContext &C, OpenACCClauseKind Spelling, SourceLocation BeginLoc, SourceLocation LParenLoc, OpenACCModifierKind Mods, ArrayRef< Expr * > VarList, SourceLocation EndLoc)
static OpenACCCopyInClause * Create(const ASTContext &C, OpenACCClauseKind Spelling, SourceLocation BeginLoc, SourceLocation LParenLoc, OpenACCModifierKind Mods, ArrayRef< Expr * > VarList, SourceLocation EndLoc)
static OpenACCCopyOutClause * Create(const ASTContext &C, OpenACCClauseKind Spelling, SourceLocation BeginLoc, SourceLocation LParenLoc, OpenACCModifierKind Mods, ArrayRef< Expr * > VarList, SourceLocation EndLoc)
static OpenACCCreateClause * Create(const ASTContext &C, OpenACCClauseKind Spelling, SourceLocation BeginLoc, SourceLocation LParenLoc, OpenACCModifierKind Mods, ArrayRef< Expr * > VarList, SourceLocation EndLoc)
static OpenACCDefaultAsyncClause * Create(const ASTContext &C, SourceLocation BeginLoc, SourceLocation LParenLoc, Expr *IntExpr, SourceLocation EndLoc)
static OpenACCDefaultClause * Create(const ASTContext &C, OpenACCDefaultClauseKind K, SourceLocation BeginLoc, SourceLocation LParenLoc, SourceLocation EndLoc)
static OpenACCDeleteClause * Create(const ASTContext &C, SourceLocation BeginLoc, SourceLocation LParenLoc, ArrayRef< Expr * > VarList, SourceLocation EndLoc)
static OpenACCDetachClause * Create(const ASTContext &C, SourceLocation BeginLoc, SourceLocation LParenLoc, ArrayRef< Expr * > VarList, SourceLocation EndLoc)
static OpenACCDeviceClause * Create(const ASTContext &C, SourceLocation BeginLoc, SourceLocation LParenLoc, ArrayRef< Expr * > VarList, SourceLocation EndLoc)
static OpenACCDeviceNumClause * Create(const ASTContext &C, SourceLocation BeginLoc, SourceLocation LParenLoc, Expr *IntExpr, SourceLocation EndLoc)
static OpenACCDevicePtrClause * Create(const ASTContext &C, SourceLocation BeginLoc, SourceLocation LParenLoc, ArrayRef< Expr * > VarList, SourceLocation EndLoc)
static OpenACCDeviceResidentClause * Create(const ASTContext &C, SourceLocation BeginLoc, SourceLocation LParenLoc, ArrayRef< Expr * > VarList, SourceLocation EndLoc)
A 'device_type' or 'dtype' clause, takes a list of either an 'asterisk' or an identifier.
ArrayRef< DeviceTypeArgument > getArchitectures() const
static OpenACCDeviceTypeClause * Create(const ASTContext &C, OpenACCClauseKind K, SourceLocation BeginLoc, SourceLocation LParenLoc, ArrayRef< DeviceTypeArgument > Archs, SourceLocation EndLoc)
static OpenACCFinalizeClause * Create(const ASTContext &Ctx, SourceLocation BeginLoc, SourceLocation EndLoc)
static OpenACCFirstPrivateClause * Create(const ASTContext &C, SourceLocation BeginLoc, SourceLocation LParenLoc, ArrayRef< Expr * > VarList, ArrayRef< OpenACCFirstPrivateRecipe > InitRecipes, SourceLocation EndLoc)
static OpenACCGangClause * Create(const ASTContext &Ctx, SourceLocation BeginLoc, SourceLocation LParenLoc, ArrayRef< OpenACCGangKind > GangKinds, ArrayRef< Expr * > IntExprs, SourceLocation EndLoc)
static OpenACCHostClause * Create(const ASTContext &C, SourceLocation BeginLoc, SourceLocation LParenLoc, ArrayRef< Expr * > VarList, SourceLocation EndLoc)
static OpenACCIfClause * Create(const ASTContext &C, SourceLocation BeginLoc, SourceLocation LParenLoc, Expr *ConditionExpr, SourceLocation EndLoc)
static OpenACCIfPresentClause * Create(const ASTContext &Ctx, SourceLocation BeginLoc, SourceLocation EndLoc)
static OpenACCIndependentClause * Create(const ASTContext &Ctx, SourceLocation BeginLoc, SourceLocation EndLoc)
static OpenACCLinkClause * Create(const ASTContext &C, SourceLocation BeginLoc, SourceLocation LParenLoc, ArrayRef< Expr * > VarList, SourceLocation EndLoc)
static OpenACCNoCreateClause * Create(const ASTContext &C, SourceLocation BeginLoc, SourceLocation LParenLoc, ArrayRef< Expr * > VarList, SourceLocation EndLoc)
static OpenACCNoHostClause * Create(const ASTContext &Ctx, SourceLocation BeginLoc, SourceLocation EndLoc)
static OpenACCNumGangsClause * Create(const ASTContext &C, SourceLocation BeginLoc, SourceLocation LParenLoc, ArrayRef< Expr * > IntExprs, SourceLocation EndLoc)
static OpenACCNumWorkersClause * Create(const ASTContext &C, SourceLocation BeginLoc, SourceLocation LParenLoc, Expr *IntExpr, SourceLocation EndLoc)
static OpenACCPresentClause * Create(const ASTContext &C, SourceLocation BeginLoc, SourceLocation LParenLoc, ArrayRef< Expr * > VarList, SourceLocation EndLoc)
static OpenACCPrivateClause * Create(const ASTContext &C, SourceLocation BeginLoc, SourceLocation LParenLoc, ArrayRef< Expr * > VarList, ArrayRef< OpenACCPrivateRecipe > InitRecipes, SourceLocation EndLoc)
static OpenACCReductionClause * Create(const ASTContext &C, SourceLocation BeginLoc, SourceLocation LParenLoc, OpenACCReductionOperator Operator, ArrayRef< Expr * > VarList, ArrayRef< OpenACCReductionRecipeWithStorage > Recipes, SourceLocation EndLoc)
static OpenACCSelfClause * Create(const ASTContext &C, SourceLocation BeginLoc, SourceLocation LParenLoc, Expr *ConditionExpr, SourceLocation EndLoc)
static OpenACCSeqClause * Create(const ASTContext &Ctx, SourceLocation BeginLoc, SourceLocation EndLoc)
static OpenACCTileClause * Create(const ASTContext &C, SourceLocation BeginLoc, SourceLocation LParenLoc, ArrayRef< Expr * > SizeExprs, SourceLocation EndLoc)
static OpenACCUseDeviceClause * Create(const ASTContext &C, SourceLocation BeginLoc, SourceLocation LParenLoc, ArrayRef< Expr * > VarList, SourceLocation EndLoc)
static OpenACCVectorClause * Create(const ASTContext &Ctx, SourceLocation BeginLoc, SourceLocation LParenLoc, Expr *IntExpr, SourceLocation EndLoc)
static OpenACCVectorLengthClause * Create(const ASTContext &C, SourceLocation BeginLoc, SourceLocation LParenLoc, Expr *IntExpr, SourceLocation EndLoc)
static OpenACCWaitClause * Create(const ASTContext &C, SourceLocation BeginLoc, SourceLocation LParenLoc, Expr *DevNumExpr, SourceLocation QueuesLoc, ArrayRef< Expr * > QueueIdExprs, SourceLocation EndLoc)
static OpenACCWorkerClause * Create(const ASTContext &Ctx, SourceLocation BeginLoc, SourceLocation LParenLoc, Expr *IntExpr, SourceLocation EndLoc)
A (possibly-)qualified type.
bool isNull() const
Return true if this QualType doesn't point to a type yet.
PartialDiagnostic PDiag(unsigned DiagID=0)
Build a partial diagnostic.
ASTContext & getASTContext() const
DeclContext * getCurContext() const
SemaDiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID)
Emit a diagnostic.
A type to represent all the data for an OpenACC Clause that has been parsed, but not yet created/sema...
void setVarListDetails(ArrayRef< Expr * > VarList, OpenACCModifierKind ModKind)
ArrayRef< Expr * > getIntExprs()
ArrayRef< Expr * > getQueueIdExprs() const
OpenACCDirectiveKind getDirectiveKind() const
ArrayRef< OpenACCGangKind > getGangKinds() const
OpenACCReductionOperator getReductionOp() const
SourceLocation getEndLoc() const
OpenACCClauseKind getClauseKind() const
const Expr * getConditionExpr() const
SourceLocation getLParenLoc() const
ArrayRef< DeviceTypeArgument > getDeviceTypeArchitectures() const
std::variant< std::monostate, clang::StringLiteral *, IdentifierInfo * > getBindDetails() const
SourceLocation getBeginLoc() const
SourceLocation getQueuesLoc() const
OpenACCModifierKind getModifierList() const
Expr * getDevNumExpr() const
ArrayRef< Expr * > getVarList()
unsigned getNumIntExprs() const
Expr * getLoopCount() const
OpenACCDefaultClauseKind getDefaultClauseKind() const
bool CheckDeclareClause(SemaOpenACC::OpenACCParsedClause &Clause, OpenACCModifierKind Mods)
Definition SemaOpenACCClause.cpp:2241
OpenACCPrivateRecipe CreatePrivateInitRecipe(const Expr *VarExpr)
ComputeConstructInfo & getActiveComputeConstructInfo()
ExprResult ActOnIntExpr(OpenACCDirectiveKind DK, OpenACCClauseKind CK, SourceLocation Loc, Expr *IntExpr)
Called when encountering an 'int-expr' for OpenACC, and manages conversions and diagnostics to 'int'.
SourceLocation LoopWorkerClauseLoc
If there is a current 'active' loop construct with a 'worker' clause on it (on any sort of construct)...
OpenACCClause * ActOnClause(ArrayRef< const OpenACCClause * > ExistingClauses, OpenACCParsedClause &Clause)
Called after parsing an OpenACC Clause so that it can be checked.
Definition SemaOpenACCClause.cpp:1854
bool CheckVarIsPointerType(OpenACCClauseKind ClauseKind, Expr *VarExpr)
Called to check the 'var' type is a variable of pointer type, necessary for 'deviceptr' and 'attach' ...
struct clang::SemaOpenACC::LoopGangOnKernelTy LoopGangClauseOnKernel
ExprResult CheckReductionVar(OpenACCDirectiveKind DirectiveKind, OpenACCReductionOperator ReductionOp, Expr *VarExpr)
Called while semantically analyzing the reduction clause, ensuring the var is the correct kind of ref...
Definition SemaOpenACCClause.cpp:1970
llvm::SmallVector< Expr * > CheckLinkClauseVarList(ArrayRef< Expr * > VarExpr)
Definition SemaOpenACCClause.cpp:2195
ExprResult CheckCollapseLoopCount(Expr *LoopCount)
Checks the loop depth value for a collapse clause.
Definition SemaOpenACCClause.cpp:2034
SourceLocation LoopVectorClauseLoc
If there is a current 'active' loop construct with a 'vector' clause on it (on any sort of construct)...
ExprResult CheckGangExpr(ArrayRef< const OpenACCClause * > ExistingClauses, OpenACCDirectiveKind DK, OpenACCGangKind GK, Expr *E)
Definition SemaOpenACCClause.cpp:2063
OpenACCFirstPrivateRecipe CreateFirstPrivateInitRecipe(const Expr *VarExpr)
OpenACCClause * CheckGangClause(OpenACCDirectiveKind DirKind, ArrayRef< const OpenACCClause * > ExistingClauses, SourceLocation BeginLoc, SourceLocation LParenLoc, ArrayRef< OpenACCGangKind > GangKinds, ArrayRef< Expr * > IntExprs, SourceLocation EndLoc)
Definition SemaOpenACCClause.cpp:2114
bool CheckReductionVarType(Expr *VarExpr)
Definition SemaOpenACCClause.cpp:1879
OpenACCClause * CheckReductionClause(ArrayRef< const OpenACCClause * > ExistingClauses, OpenACCDirectiveKind DirectiveKind, SourceLocation BeginLoc, SourceLocation LParenLoc, OpenACCReductionOperator ReductionOp, ArrayRef< Expr * > Vars, ArrayRef< OpenACCReductionRecipeWithStorage > Recipes, SourceLocation EndLoc)
Definition SemaOpenACCClause.cpp:2156
ExprResult CheckTileSizeExpr(Expr *SizeExpr)
Checks a single size expr for a tile clause.
Definition SemaOpenACCClause.cpp:2006
OpenACCReductionRecipeWithStorage CreateReductionInitRecipe(OpenACCReductionOperator ReductionOperator, const Expr *VarExpr)
Encodes a location in the source.
bool isValid() const
Return true if this is a valid SourceLocation object.
SourceLocation getBeginLoc() const LLVM_READONLY
RecordDecl * getAsRecordDecl() const
Retrieves the RecordDecl this type refers to.
bool isIntegerType() const
isIntegerType() does not include complex integers (a GCC extension).
Represents a variable declaration or definition.
bool hasExternalStorage() const
Returns true if a variable has extern or private_extern storage.
The JSON file list parser is used to communicate input to InstallAPI.
bool isa(CodeGen::Address addr)
bool isOpenACCComputeDirectiveKind(OpenACCDirectiveKind K)
bool isOpenACCCombinedDirectiveKind(OpenACCDirectiveKind K)
OpenACCClauseKind
Represents the kind of an OpenACC clause.
@ Auto
'auto' clause, allowed on 'loop' directives.
@ Bind
'bind' clause, allowed on routine constructs.
@ Gang
'gang' clause, allowed on 'loop' and Combined constructs.
@ Wait
'wait' clause, allowed on Compute, Data, 'update', and Combined constructs.
@ DevicePtr
'deviceptr' clause, allowed on Compute and Combined Constructs, plus 'data' and 'declare'.
@ VectorLength
'vector_length' clause, allowed on 'parallel', 'kernels', 'parallel loop', and 'kernels loop' constru...
@ Async
'async' clause, allowed on Compute, Data, 'update', 'wait', and Combined constructs.
@ Collapse
'collapse' clause, allowed on 'loop' and Combined constructs.
@ Invalid
Represents an invalid clause, for the purposes of parsing.
@ Vector
'vector' clause, allowed on 'loop', Combined, and 'routine' directives.
@ Worker
'worker' clause, allowed on 'loop', Combined, and 'routine' directives.
@ Create
'create' clause, allowed on Compute and Combined constructs, plus 'data', 'enter data',...
@ DeviceType
'device_type' clause, allowed on Compute, 'data', 'init', 'shutdown', 'set', update',...
@ NumGangs
'num_gangs' clause, allowed on 'parallel', 'kernels', parallel loop', and 'kernels loop' constructs.
@ Link
'link' clause, allowed on 'declare' construct.
@ Seq
'seq' clause, allowed on 'loop' and 'routine' directives.
@ Tile
'tile' clause, allowed on 'loop' and Combined constructs.
@ DeviceResident
'device_resident' clause, allowed on the 'declare' construct.
@ DType
'dtype' clause, an alias for 'device_type', stored separately for diagnostic purposes.
@ CopyIn
'copyin' clause, allowed on Compute and Combined constructs, plus 'data', 'enter data',...
@ Independent
'independent' clause, allowed on 'loop' directives.
@ NumWorkers
'num_workers' clause, allowed on 'parallel', 'kernels', parallel loop', and 'kernels loop' constructs...
IdentifierLoc DeviceTypeArgument
@ Result
The result type of a method or function.
bool isOpenACCModifierBitSet(OpenACCModifierKind List, OpenACCModifierKind Bit)
U cast(CodeGen::Address addr)
ActionResult< Expr * > ExprResult
OpenACCDirectiveKind DirKind