doi:10.1007/s10260-021-00579-1>, F. Castelletti and A. Mascaro (2022) <doi:10.48550/arXiv.2201.12003>.">

BCDAG: Bayesian Structure and Causal Learning of Gaussian Directed Graphs (original) (raw)

A collection of functions for structure learning of causal networks and estimation of joint causal effects from observational Gaussian data. Main algorithm consists of a Markov chain Monte Carlo scheme for posterior inference of causal structures, parameters and causal effects between variables. References: F. Castelletti and A. Mascaro (2021) <doi:10.1007/s10260-021-00579-1>, F. Castelletti and A. Mascaro (2022) <doi:10.48550/arXiv.2201.12003>.

Version: 1.1.3
Depends: R (≥ 2.10)
Imports: graph, graphics, gRbase, Rgraphviz, grDevices, lattice, methods, mvtnorm, stats, utils
Suggests: rmarkdown, knitr, testthat (≥ 3.0.0)
Published: 2025-02-28
DOI: 10.32614/CRAN.package.BCDAG
Author: Federico Castelletti [aut], Alessandro Mascaro [aut, cre, cph]
Maintainer: Alessandro Mascaro <alessandro.mascaro at upf.edu>
BugReports: https://github.com/alesmascaro/BCDAG/issues
License: MIT + file
URL: https://github.com/alesmascaro/BCDAG
NeedsCompilation: no
Materials: README, NEWS
CRAN checks: BCDAG results

Documentation:

Downloads:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=BCDAGto link to this page.