doi:10.18637/jss.v100.i14>. Implements hierarchical prior selection for conjugate priors in the fashion of Giannone, Lenza & Primiceri (2015) <doi:10.1162/REST_a_00483>. Functions to compute and identify impulse responses, calculate forecasts, forecast error variance decompositions and scenarios are available. Several methods to print, plot and summarise results facilitate analysis.">

BVAR: Hierarchical Bayesian Vector Autoregression (original) (raw)

Estimation of hierarchical Bayesian vector autoregressive models following Kuschnig & Vashold (2021) <doi:10.18637/jss.v100.i14>. Implements hierarchical prior selection for conjugate priors in the fashion of Giannone, Lenza & Primiceri (2015) <doi:10.1162/REST_a_00483>. Functions to compute and identify impulse responses, calculate forecasts, forecast error variance decompositions and scenarios are available. Several methods to print, plot and summarise results facilitate analysis.

Version: 1.0.5
Depends: R (≥ 3.3.0)
Imports: mvtnorm, stats, graphics, utils, grDevices
Suggests: coda, vars, tinytest
Published: 2024-02-16
DOI: 10.32614/CRAN.package.BVAR
Author: Nikolas Kuschnig ORCID iD [aut, cre], Lukas Vashold ORCID iD [aut], Nirai Tomass [ctb], Michael McCracken [dtc], Serena Ng [dtc]
Maintainer: Nikolas Kuschnig <nikolas.kuschnig at wu.ac.at>
BugReports: https://github.com/nk027/bvar/issues
License: GPL-3 | file
URL: https://github.com/nk027/bvar
NeedsCompilation: no
Citation: BVAR citation info
Materials: README, NEWS
In views: Bayesian, TimeSeries
CRAN checks: BVAR results

Documentation:

Downloads:

Reverse dependencies:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=BVARto link to this page.