BVAR: Hierarchical Bayesian Vector Autoregression (original) (raw)
Estimation of hierarchical Bayesian vector autoregressive models following Kuschnig & Vashold (2021) <doi:10.18637/jss.v100.i14>. Implements hierarchical prior selection for conjugate priors in the fashion of Giannone, Lenza & Primiceri (2015) <doi:10.1162/REST_a_00483>. Functions to compute and identify impulse responses, calculate forecasts, forecast error variance decompositions and scenarios are available. Several methods to print, plot and summarise results facilitate analysis.
Version: | 1.0.5 |
---|---|
Depends: | R (≥ 3.3.0) |
Imports: | mvtnorm, stats, graphics, utils, grDevices |
Suggests: | coda, vars, tinytest |
Published: | 2024-02-16 |
DOI: | 10.32614/CRAN.package.BVAR |
Author: | Nikolas Kuschnig |
Maintainer: | Nikolas Kuschnig <nikolas.kuschnig at wu.ac.at> |
BugReports: | https://github.com/nk027/bvar/issues |
License: | GPL-3 | file |
URL: | https://github.com/nk027/bvar |
NeedsCompilation: | no |
Citation: | BVAR citation info |
Materials: | README, NEWS |
In views: | Bayesian, TimeSeries |
CRAN checks: | BVAR results |
Documentation:
Downloads:
Reverse dependencies:
Linking:
Please use the canonical formhttps://CRAN.R-project.org/package=BVARto link to this page.