DatabionicSwarm: Swarm Intelligence for Self-Organized Clustering (original) (raw)
Algorithms implementing populations of agents that interact with one another and sense their environment may exhibit emergent behavior such as self-organization and swarm intelligence. Here, a swarm system called Databionic swarm (DBS) is introduced which was published in Thrun, M.C., Ultsch A.: "Swarm Intelligence for Self-Organized Clustering" (2020), Artificial Intelligence, <doi:10.1016/j.artint.2020.103237>. DBS is able to adapt itself to structures of high-dimensional data such as natural clusters characterized by distance and/or density based structures in the data space. The first module is the parameter-free projection method called Pswarm (Pswarm()), which exploits the concepts of self-organization and emergence, game theory, swarm intelligence and symmetry considerations. The second module is the parameter-free high-dimensional data visualization technique, which generates projected points on the topographic map with hypsometric tints defined by the generalized U-matrix (GeneratePswarmVisualization()). The third module is the clustering method itself with non-critical parameters (DBSclustering()). Clustering can be verified by the visualization and vice versa. The term DBS refers to the method as a whole. It enables even a non-professional in the field of data mining to apply its algorithms for visualization and/or clustering to data sets with completely different structures drawn from diverse research fields. The comparison to common projection methods can be found in the book of Thrun, M.C.: "Projection Based Clustering through Self-Organization and Swarm Intelligence" (2018) <doi:10.1007/978-3-658-20540-9>.
Version: | 2.0.0 |
---|---|
Depends: | R (≥ 3.0) |
Imports: | Rcpp (≥ 1.0.8), RcppParallel (≥ 5.1.4), deldir, GeneralizedUmatrix, ABCanalysis, ggplot2 |
LinkingTo: | Rcpp, RcppArmadillo, RcppParallel |
Suggests: | DataVisualizations, knitr (≥ 1.12), rmarkdown (≥ 0.9), plotrix, geometry, sp, spdep, parallel, rgl, png, ProjectionBasedClustering, parallelDist, pracma, dendextend |
Published: | 2024-06-20 |
DOI: | 10.32614/CRAN.package.DatabionicSwarm |
Author: | Michael Thrun |
Maintainer: | Michael Thrun <m.thrun at gmx.net> |
BugReports: | https://github.com/Mthrun/DatabionicSwarm/issues |
License: | GPL-3 |
URL: | https://www.deepbionics.org/ |
NeedsCompilation: | yes |
SystemRequirements: | GNU make, pandoc (>=1.12.3, needed for vignettes) |
Citation: | DatabionicSwarm citation info |
Materials: | |
In views: | Cluster |
CRAN checks: | DatabionicSwarm results |
Documentation:
Downloads:
Reverse dependencies:
Linking:
Please use the canonical formhttps://CRAN.R-project.org/package=DatabionicSwarmto link to this page.