doi:10.1145/1143844.1143874>; Keilwagen et al. (2014) <doi:10.1371/journal.pone.0092209>; Grau et al. (2015) <doi:10.1093/bioinformatics/btv153>.">

PRROC: Precision-Recall and ROC Curves for Weighted and Unweighted Data (original) (raw)

Computes the areas under the precision-recall (PR) and ROC curve for weighted (e.g., soft-labeled) and unweighted data. In contrast to other implementations, the interpolation between points of the PR curve is done by a non-linear piecewise function. In addition to the areas under the curves, the curves themselves can also be computed and plotted by a specific S3-method. References: Davis and Goadrich (2006) <doi:10.1145/1143844.1143874>; Keilwagen et al. (2014) <doi:10.1371/journal.pone.0092209>; Grau et al. (2015) <doi:10.1093/bioinformatics/btv153>.

Version: 1.3.1
Suggests: testthat, ggplot2, ROCR
Published: 2018-06-19
DOI: 10.32614/CRAN.package.PRROC
Author: Jan Grau and Jens Keilwagen
Maintainer: Jan Grau
License: GPL-3
NeedsCompilation: no
Citation: PRROC citation info
CRAN checks: PRROC results

Documentation:

Downloads:

Reverse dependencies:

Reverse imports: biospear, DeepPINCS, FRASER, GroupBN, HPiP, ICBioMark, immunaut, mlr3measures, MSiP, OUTRIDER, prcbench, preciseTAD, priorityelasticnet, saseR, SIAMCAT, simtrait, usefun
Reverse suggests: PheVis, WeightedROC

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=PRROCto link to this page.