doi:10.1038/s41596-019-0227-6>, Yu et al. (2017) <doi:10.1093/jamia/ocw135>, and Liao et al. (2015) <doi:10.1136/bmj.h1885>.">

PheCAP: High-Throughput Phenotyping with EHR using a Common Automated Pipeline (original) (raw)

Implement surrogate-assisted feature extraction (SAFE) and common machine learning approaches to train and validate phenotyping models. Background and details about the methods can be found at Zhang et al. (2019) <doi:10.1038/s41596-019-0227-6>, Yu et al. (2017) <doi:10.1093/jamia/ocw135>, and Liao et al. (2015) <doi:10.1136/bmj.h1885>.

Version: 1.2.1
Depends: R (≥ 3.3.0)
Imports: graphics, methods, stats, utils, glmnet, RMySQL
Suggests: ggplot2, e1071, randomForestSRC, xgboost, knitr, rmarkdown
Published: 2020-09-17
DOI: 10.32614/CRAN.package.PheCAP
Author: Yichi Zhang [aut], Chuan Hong [aut], Tianxi Cai [aut], PARSE LTD [aut, cre]
Maintainer: PARSE LTD
BugReports: https://github.com/celehs/PheCAP/issues
License: GPL-3
URL: https://celehs.github.io/PheCAP/, https://github.com/celehs/PheCAP
NeedsCompilation: no
Materials: README
CRAN checks: PheCAP results

Documentation:

Downloads:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=PheCAPto link to this page.