Help for package VIMPS (original) (raw)

Title: Calculate Variable Importance with Knock Off Variables
Version: 1.0
Description: The variable importance is calculated using knock off variables. Then output can be provided in numerical and graphical form. Meredith L Wallace (2023) <doi:10.1186/s12874-023-01965-x>.
License: MIT + file LICENSE
Encoding: UTF-8
RoxygenNote: 7.2.3
Imports: caret, ggplot2, ranger, knockoff, ROCR
Suggests: knitr, rmarkdown, testthat
VignetteBuilder: knitr
NeedsCompilation: no
Packaged: 2024-02-20 16:13:09 UTC; wheelerbj2
Author: Meredith Wallace ORCID iD [aut, cre]
Maintainer: Meredith Wallace lotzmj@upmc.edu
Repository: CRAN
Date/Publication: 2024-02-21 20:40:06 UTC

calc_vimps

Description

Calculate the variable importance of the domains for a given dataset

Usage

calc_vimps(
  dat,
  dep_var,
  doms,
  calc_ko = TRUE,
  calc_dom = FALSE,
  num_folds = 10,
  num_kos = 100,
  model_all = normal_model,
  model_subset = one_tree_model,
  mtry = NULL,
  min.node.size = NULL,
  iterations = 500,
  ko_path = NULL,
  results_path = NULL,
  output_file_ko = NULL,
  output_file_dom = NULL
)

Arguments

dat A dataframe of data
dep_var The dependent variable in the dat
doms A dataframe of the variables in dat and the domain they belong to
calc_ko True/False to calculate the knock_off importance
calc_dom True/False to calculate the domain importance
num_folds The number of folds to use while calculating the classification threshold for predictions
num_kos The number of sets of knock off variables to create
model_all The model to use in full ensemble mode in calculations
model_subset The model to use sigularly for building ensembles from
mtry The mtry value to use in the random forests
min.node.size The min.node.size value to use in the random forests
iterations Number of trees to build while calculating variable importance
ko_path Where to store the knock off variable sets
results_path Where to store the intermediary results for calculating variable importance
output_file_ko Where to store the results of the knock off variable importance
output_file_dom Where to store the results of the domain variable importance

Value

List with 1) Threshold for binary class labeling 2) Model metrics using all variables 3) Model metrics using knock-off variables 4) Variable importance with knock-offs

Examples

calc_vimps(
  data.frame(
    X1=c(2,8,3,9,1,4,3,8,0,9,2,8,3,9,1,4,3,8,0,9),
    X2=c(7,2,5,0,9,1,8,8,3,9,7,2,5,0,9,1,8,8,3,9),
    Y=c(0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,1,1,1,1,1)),
 "Y",
 data.frame(domain=c('X1','X2'),
 variable=c('X1','X2')),
 num_folds=2,
 num_kos=1,
 iterations=50)


graph_results

Description

Graph the variable importance results from calc_vimps

Usage

graph_results(results, object)

Arguments

results The results from calc_vimps
object Which object from results to use for graphing results

Value

No return value