doi:10.1111/j.1467-9868.2009.00736.x> and automatic tuning inspired by Pitt et al. (2012) <doi:10.1016/j.jeconom.2012.06.004> and J. Dahlin and T. B. Schön (2019) <doi:10.18637/jss.v088.c02>.">

bayesSSM: Bayesian Methods for State Space Models (original) (raw)

Implements methods for Bayesian analysis of State Space Models. Includes implementations the Particle Marginal Metropolis-Hastings algorithm described in Andrieu et al. (2010) <doi:10.1111/j.1467-9868.2009.00736.x> and automatic tuning inspired by Pitt et al. (2012) <doi:10.1016/j.jeconom.2012.06.004> and J. Dahlin and T. B. Schön (2019) <doi:10.18637/jss.v088.c02>.

Version: 0.4.7
Imports: MASS, stats, dplyr, future, future.apply
Suggests: knitr, rmarkdown, testthat (≥ 3.0.0), ggplot2, tidyr, extraDistr
Published: 2025-04-23
DOI: 10.32614/CRAN.package.bayesSSM
Author: Bjarke Hautop [aut, cre, cph]
Maintainer: Bjarke Hautop <bjarke.hautop at gmail.com>
BugReports: https://github.com/BjarkeHautop/bayesSSM/issues
License: MIT + file
URL: https://github.com/BjarkeHautop/bayesSSM,https://bjarkehautop.github.io/bayesSSM/
NeedsCompilation: no
Materials: README NEWS
CRAN checks: bayesSSM results

Documentation:

Downloads:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=bayesSSMto link to this page.