baygel: Bayesian Shrinkage Estimators for Precision Matrices in Gaussian Graphical Models (original) (raw)
This R package offers block Gibbs samplers for the Bayesian (adaptive) graphical lasso, ridge, and naive elastic net priors. These samplers facilitate the simulation of the posterior distribution of precision matrices for Gaussian distributed data and were originally proposed by: Wang (2012) <doi:10.1214/12-BA729>; Smith et al. (2022) <doi:10.48550/arXiv.2210.16290> and Smith et al. (2023) <doi:10.48550/arXiv.2306.14199>, respectively.
Version: | 0.3.0 |
---|---|
Imports: | Rcpp (≥ 1.0.8), RcppArmadillo (≥ 0.11.1.1.0) |
LinkingTo: | Rcpp, RcppArmadillo, RcppProgress |
Suggests: | MASS, pracma |
Published: | 2023-11-11 |
DOI: | 10.32614/CRAN.package.baygel |
Author: | Jarod Smith |
Maintainer: | Jarod Smith |
License: | GPL (≥ 3) |
URL: | https://github.com/Jarod-Smithy/baygel |
NeedsCompilation: | yes |
CRAN checks: | baygel results |
Documentation:
Downloads:
Linking:
Please use the canonical formhttps://CRAN.R-project.org/package=baygelto link to this page.