doi:10.1080/01621459.2012.722900> and (2015) <doi:10.1007/978-3-319-18732-7_3>. The key idea behind this methodology is dimension reduction based on a singular value decomposition in a Hilbert space, which reduces the curve regression problem to several scalar linear regression problems.">

clr: Curve Linear Regression via Dimension Reduction (original) (raw)

A new methodology for linear regression with both curve response and curve regressors, which is described in Cho, Goude, Brossat and Yao (2013) <doi:10.1080/01621459.2012.722900> and (2015) <doi:10.1007/978-3-319-18732-7_3>. The key idea behind this methodology is dimension reduction based on a singular value decomposition in a Hilbert space, which reduces the curve regression problem to several scalar linear regression problems.

Version: 0.1.2
Depends: R (≥ 2.10)
Imports: magrittr, lubridate, dplyr, stats
Published: 2019-07-29
DOI: 10.32614/CRAN.package.clr
Author: Amandine Pierrot with contributions and/or help from Qiwei Yao, Haeran Cho, Yannig Goude and Tony Aldon.
Maintainer: Amandine Pierrot <amandine.m.pierrot at gmail.com>
License: LGPL-2 | LGPL-2.1 LGPL-3 [expanded from: LGPL (≥ 2.0)]
Copyright: EDF R&D 2017
NeedsCompilation: no
Materials: README NEWS
CRAN checks: clr results

Documentation:

Downloads:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=clrto link to this page.