doi:10.1111/j.1467-9892.2010.00697.x> and the model assessment tools are presented in Czado et al. (2009) <doi:10.1111/j.1541-0420.2009.01191.x> and, Tsay (1992) <doi:10.2307/2347612>.">

coconots: Convolution-Closed Models for Count Time Series (original) (raw)

Useful tools for fitting, validating, and forecasting of practical convolution-closed time series models for low counts are provided. Marginal distributions of the data can be modelled via Poisson and Generalized Poisson innovations. Regression effects can be incorporated through time varying innovation rates. The models are described in Jung and Tremayne (2011) <doi:10.1111/j.1467-9892.2010.00697.x> and the model assessment tools are presented in Czado et al. (2009) <doi:10.1111/j.1541-0420.2009.01191.x> and, Tsay (1992) <doi:10.2307/2347612>.

Version: 2.0.0
Depends: R (≥ 4.0.2), Rcpp
Imports: forecast, numDeriv, HMMpa, ggplot2, matrixStats, JuliaConnectoR
LinkingTo: Rcpp
Suggests: testthat (≥ 3.0.0)
Published: 2025-03-22
DOI: 10.32614/CRAN.package.coconots
Author: Manuel Huth [aut, cre], Robert C. Jung [aut], Andy Tremayne [aut]
Maintainer: Manuel Huth <manuel.huth at yahoo.com>
License: MIT + file
NeedsCompilation: yes
Materials: README
In views: TimeSeries
CRAN checks: coconots results

Documentation:

Downloads:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=coconotsto link to this page.