contsurvplot: Visualize the Effect of a Continuous Variable on a Time-to-Event Outcome (original) (raw)
Graphically display the (causal) effect of a continuous variable on a time-to-event outcome using multiple different types of plots based on g-computation. Those functions include, among others, survival area plots, survival contour plots, survival quantile plots and 3D surface plots. Due to the use of g-computation, all plot allow confounder-adjustment naturally. For details, see Robin Denz, Nina Timmesfeld (2023) <doi:10.1097/EDE.0000000000001630>.
Version: | 0.2.1 |
---|---|
Imports: | ggplot2 (≥ 3.4.0), dplyr, rlang, riskRegression, foreach |
Suggests: | survival, pammtools, gganimate, transformr, plotly, reshape2, doParallel, knitr, rmarkdown, testthat (≥ 3.0.0), vdiffr (≥ 1.0.0), covr |
Published: | 2023-08-15 |
DOI: | 10.32614/CRAN.package.contsurvplot |
Author: | Robin Denz [aut, cre] |
Maintainer: | Robin Denz <robin.denz at rub.de> |
Contact: | robin.denz@rub.de |
BugReports: | https://github.com/RobinDenz1/contsurvplot/issues |
License: | GPL (≥ 3) |
URL: | https://github.com/RobinDenz1/contsurvplot,https://robindenz1.github.io/contsurvplot/ |
NeedsCompilation: | no |
Citation: | contsurvplot citation info |
Materials: | README NEWS |
CRAN checks: | contsurvplot results |
Documentation:
Downloads:
Linking:
Please use the canonical formhttps://CRAN.R-project.org/package=contsurvplotto link to this page.