Generated vectors, matrices, and cubes (original) (raw)
This vignette is adapted from the official Armadillo documentation.
Generate vector with linearly spaced elements
The linspace()
function generates a vector of linearly spaced values from start
to end
(it includes end
). The arguments can be start, end
or start, end, N
, where N
is optional and indicates the number of elements in the vector (N
is 100 by default).
The usage is:
vec v = linspace(start, end, N)
vector_type v = linspace<vector_type>(start, end, N)
Examples
[[cpp11::register]] doubles linspace1_(const int& n) {
vec a = linspace(1, 2, n);
rowvec b = linspace<rowvec>(3, 4, n);
vec res = a + b.t();
return as_doubles(res);
}
Caveat
For N = 1
, the generated vector will have a single element equal to end.
Generate vector with logarithmically spaced elements
The logspace()
function generates a vector of logarithmically spaced values from 10^start
to 10^end
(it includes 10^end
). The arguments can be start, end
or start, end, N
, where N
is optional and indicates the number of elements in the vector (N
is 50 by default).
The usage is:
vec v = logspace(start, end, N)
vector_type v = logspace<vector_type>(start, end, N)
Examples
[[cpp11::register]] doubles logspace1_(const int& n) {
vec a = logspace(1, 2, n);
rowvec b = logspace<rowvec>(3, 4, n);
vec res = a + b.t();
return as_doubles(res);
}
Generate vector with regularly spaced elements
The regspace()
function generates a vector of regularly spaced values start, start + delta, start + 2*delta, ..., start + M * delta
where M
is M = floor((end - start) / delta)
. The arguments can be start, end
or start, delta, end
, where delta
is optional (delta = 1
if start <= end
and delta = -1
if start > end
by default).
The usage is:
vec v = regspace(start, end)
vec v = regspace(start, delta, end)
vector_type v = regspace<vector_type>(start, end)
vector_type v = regspace<vector_type>(start, delta, end)
The output vector will be empty if any of the following conditions are met:
start < end
anddelta < 0
start > end
anddelta > 0
delta = 0
Examples
[[cpp11::register]] doubles regspace1_(const double& delta) {
vec a = regspace(1, delta, 2);
rowvec b = regspace<rowvec>(3, delta, 4);
vec res = a + b.t();
return as_doubles(res);
}
Caveats
- This is different from Matlab/Octave.
- Do not use
regspace()
to specify ranges for contiguous submatrix views, usespan()
instead.
Generate vector with random permutation of a sequence of integers
The randperm()
function generates a vector of permutation of integers from 0
to N-1
. The argument can be empty, N
, or N, M
, where N
(N = 10
by default) is the range of integers and M
(M = N
by default) is the length of the output.
The usage is:
uvec v = randperm(N)
uvec v = randperm(N, M)
Examples
[[cpp11::register]] integers randperm1_(const int& n, const int& m) {
uvec a = randperm(n);
uvec b = randperm(n, m);
uvec res = a + b;
return as_integers(res);
}
Generate identity matrix
The eye()
function generates a matrix of size n x m
. The argument can be n_rows, n_cols
or size(X)
. When n_rows = n_cols
, the output is an identity matrix.
The usage is:
mat X = eye(n_rows, n_cols)
matrix_type X = eye<matrix_type>(n_rows, n_cols)
matrix_type X = eye<matrix_type>(size(X))
Examples
[[cpp11::register]] doubles_matrix<> eye1_(const int& n) {
mat A = eye(5,5); // or: mat A(5,5,fill::eye);
fmat B = 123.0 * eye<fmat>(5,5);
cx_mat C = eye<cx_mat>( size(B) );
return as_doubles(res);
}
Generate object filled with ones
The ones()
function generates a vector, matrix or cube. The arguments can be n_elem
, n_rows, n_cols
, n_rows, n_cols, n_slices
, or size(X)
. The
The usage is:
vector_type v = ones<vector_type>(n_elem)
matrix_type X = ones<matrix_type>(n_rows, n_cols)
matrix_type Y = ones<matrix_type>(size(X))
cube_type Q = ones<cube_type>(n_rows, n_cols, n_slices)
cube_type R = ones<cube_type>(size(Q))
Examples
[[cpp11::register]] doubles_matrix<> ones2_(const int& n) {
vec v = ones(n); // or: vec v(10, fill::ones);
uvec u = ones<uvec>(n);
rowvec r = ones<rowvec>(n);
mat A = ones(n, n); // or: mat A(n, n, fill::ones);
fmat B = ones<fmat>(n, n);
cube Q = ones(n, n, n + 1); // or: cube Q(n, n, n + 1, fill::ones);
mat res = diagmat(v) + diagmat(conv_to<vec>::from(u)) + diagmat(r) + A + B +
Q.slice(0);
return as_doubles_matrix(res);
}
Caveat
Specifying fill::ones
during object construction is more compact. For example, mat A(5, 6, fill::ones)
.
Generate object filled with zeros
The zeros()
function generates a vector, matrix or cube. The arguments can be n_elem
, n_rows, n_cols
, n_rows, n_cols, n_slices
, or size(X)
.
The usage is:
vector_type v = zeros<vector_type>(n_elem)
matrix_type X = zeros<matrix_type>(n_rows, n_cols)
matrix_type Y = zeros<matrix_type>(size(X))
cube_type Q = zeros<cube_type>(n_rows, n_cols, n_slices)
cube_type R = zeros<cube_type>(size(Q))
Examples
[[cpp11::register]] doubles_matrix<> zeros2_(const int& n) {
vec v = zeros(n); // or: vec v(10, fill::zeros);
uvec u = zeros<uvec>(n);
rowvec r = zeros<rowvec>(n);
mat A = zeros(n, n); // or: mat A(n, n, fill::zeros);
fmat B = zeros<fmat>(n, n);
cube Q = zeros(n, n, n + 1); // or: cube Q(n, n, n + 1, fill::zeros);
mat res = diagmat(v) + diagmat(conv_to<vec>::from(u)) + diagmat(r) + A + B +
Q.slice(0);
return as_doubles_matrix(res);
}
Caveat
Specifying fill::zeros
during object construction is more compact. For example, mat A(5, 6, fill::zeros)
.
Generate object with random values from a uniform distribution
The randu()
function generates a vector, matrix or cube with the elements set to random floating point values uniformly distributed in the [a,b]
interval. The arguments can be distr_param(a,b)
, n_elem
, n_elem, distr_param(a,b)
, n_rows, n_cols
, n_rows, n_cols, distr_param(a,b)
, n_rows, n_cols, n_slices
, n_rows, n_cols, n_slices, distr_param(a,b)
, size(X)
, or size(X), distr_param(a,b)
.
The usage is:
// the scalar type can be: float, double, cx_float, or cx_double
scalar_type s = randu<scalar_type>()
scalar_type s = randu<scalar_type>(distr_param(a,b))
vector_type v = randu<vector_type>(n_elem)
vector_type v = randu<vector_type>(n_elem, distr_param(a,b))
matrix_type X = randu<matrix_type>(n_rows, n_cols)
matrix_type X = randu<matrix_type>(n_rows, n_cols, distr_param(a,b))
cube_type Q = randu<cube_type>(n_rows, n_cols, n_slices)
cube_type Q = randu<cube_type>(n_rows, n_cols, n_slices, distr_param(a,b))
Examples
[[cpp11::register]] doubles_matrix<> randu3_(const int& n) {
double a = randu();
double b = randu(distr_param(10, 20));
vec v1 = randu(n); // or vec v1(n, fill::randu);
vec v2 = randu(n, distr_param(10, 20));
rowvec r1 = randu<rowvec>(n);
rowvec r2 = randu<rowvec>(n, distr_param(10, 20));
mat A1 = randu(n, n); // or mat A1(n, n, fill::randu);
mat A2 = randu(n, n, distr_param(10, 20));
fmat B1 = randu<fmat>(n, n);
fmat B2 = randu<fmat>(n, n, distr_param(10, 20));
mat res = diagmat(v1) + diagmat(v2) + diagmat(r1) + diagmat(r2) + A1 + A2 +
B1 + B2;
res.each_col([a](vec& x) { x += a; });
res.each_row([b](rowvec& y) { y /= b; });
return as_doubles_matrix(res);
}
Caveat
To generate a matrix with random integer values instead of floating point values, use randi()
instead.
Generate object with random values from a normal/gaussian distribution
The randn()
function generates a vector, matrix or cube with the elements set to random floating point values normally distributed with mean 0
and standard deviation 1
. The arguments can be n_elem, distr_param(mean, stddev)
, n_elem
, n_elem, distr_param(mean, stddev)
, n_rows, n_cols
, n_rows, n_cols, distr_param(mean, stddev)
, n_rows, n_cols, n_slices
, n_rows, n_cols, n_slices, distr_param(mean, stddev)
, size(X)
, or size(X), distr_param(mean, stddev)
.
The usage is:
// the scalar type can be: float, double, cx_float, or cx_double
scalar_type s = randn<scalar_type>()
scalar_type s = randn<scalar_type>(distr_param(mean, stddev))
vector_type v = randn<vector_type>(n_elem)
vector_type v = randn<vector_type>(n_elem, distr_param(mean, stddev))
matrix_type X = randn<matrix_type>(n_rows, n_cols)
matrix_type X = randn<matrix_type>(n_rows, n_cols, distr_param(mean, stddev))
cube_type Q = randn<cube_type>(n_rows, n_cols, n_slices)
cube_type Q = randn<cube_type>(n_rows, n_cols, n_slices, distr_param(mean, stddev))
Examples
[[cpp11::register]] doubles_matrix<> randn3_(const int& n) {
vec v1 = randn(n); // or vec v1(n, fill::randn);
vec v2 = randn(n, distr_param(10, 20));
rowvec r1 = randn<rowvec>(n);
rowvec r2 = randn<rowvec>(n, distr_param(10, 20));
mat A1 = randn(n, n); // or mat A1(n, n, fill::randn);
mat A2 = randn(n, n, distr_param(10, 20));
fmat B1 = randn<fmat>(n, n);
fmat B2 = randn<fmat>(n, n, distr_param(10, 20));
mat res = diagmat(v1) + diagmat(v2) + diagmat(r1) + diagmat(r2) + A1 + A2 +
B1 + B2;
return as_doubles_matrix(res);
}
Generate object with random values from a gamma distribution
The randg()
function generates a vector, matrix or cube with the elements set to random floating point values gamma distributed with shape a
and scale b
. The arguments can be distr_param(a, b)
, n_elem
, n_elem, distr_param(a, b)
, n_rows, n_cols
, n_rows, n_cols, distr_param(a, b)
, n_rows, n_cols, n_slices
, n_rows, n_cols, n_slices, distr_param(a, b)
, size(X)
, or size(X), distr_param(a, b)
.
The usage is:
// the scalar type can be: float, double, cx_float, or cx_double
scalar_type s = randg<scalar_type>()
scalar_type s = randg<scalar_type>(distr_param(a, b))
vector_type v = randg<vector_type>(n_elem)
vector_type v = randg<vector_type>(n_elem, distr_param(a, b))
matrix_type X = randg<matrix_type>(n_rows, n_cols)
matrix_type X = randg<matrix_type>(n_rows, n_cols, distr_param(a, b))
cube_type Q = randg<cube_type>(n_rows, n_cols, n_slices)
cube_type Q = randg<cube_type>(n_rows, n_cols, n_slices, distr_param(a, b))
Examples
[[cpp11::register]] doubles_matrix<> randg3_(const int& n) {
int a = randi();
int b = randi(distr_param(-10, +20));
imat A1 = randi(n, n);
imat A2 = randi(n, n, distr_param(-10, +20));
mat B1 = randi<mat>(n, n);
mat B2 = randi<mat>(n, n, distr_param(-10, +20));
mat res = A1 + A2 + B1 + B2;
res.each_col([a](vec& x) { x *= a; });
res.each_row([b](rowvec& y) { y -= b; });
return as_doubles_matrix(res);
}
Generate object with random integer values in specified interval
The randi()
function generates a vector, matrix or cube with the elements set to random integer values uniformly distributed in the [a,b]
interval. The arguments can be distr_param(a, b)
, n_elem
, n_elem, distr_param(a, b)
, n_rows, n_cols
, n_rows, n_cols, distr_param(a, b)
, n_rows, n_cols, n_slices
, n_rows, n_cols, n_slices, distr_param(a, b)
, size(X)
, or size(X), distr_param(a, b)
. The default values are a = 0
and b = maximum_int
.
The usage is:
scalar_type s = randi<scalar_type>()
scalar_type s = randi<scalar_type>(distr_param(a, b))
vector_type v = randi<vector_type>(n_elem)
vector_type v = randi<vector_type>(n_elem, distr_param(a, b))
matrix_type X = randi<matrix_type>(n_rows, n_cols)
matrix_type X = randi<matrix_type>(n_rows, n_cols, distr_param(a, b))
cube_type Q = randi<cube_type>(n_rows, n_cols, n_slices)
cube_type Q = randi<cube_type>(n_rows, n_cols, n_slices, distr_param(a, b))
Examples
[[cpp11::register]] integers_matrix<> randi3_(const int& n) {
uvec v1 = randi(n); // or uvec v1(n, fill::randi);
uvec v2 = randi(n, distr_param(10, 20));
umat A1 = randi(n, n); // or umat A1(n, n, fill::randi);
umat A2 = randi(n, n, distr_param(10, 20));
icube Q1 = randi(icube(n, n, n + 1)); // or icube Q1(n, n, n + 1, fill::randi);
icube Q2 = randi(icube(n, n, n + 1), distr_param(10, 20));
mat res = diagmat(conv_to<vec>::from(v1)) + diagmat(conv_to<vec>::from(v2)) +
A1 + A2 + Q1.slice(0) + Q2.slice(0);
return as_integers_matrix(res);
}
Caveat
To generate a matrix with random floating point values (e.g., float or double) instead of integers, use randu()
instead.
Generate sparse identity matrix
The speye()
function generates a sparse matrix of size n x n
with the elements on the diagonal set to 1
and the remaining elements set to 0
. The argument can be n_rows, n_cols
or size(X)
. An identity matrix is generated when n_rows = n_cols
.
The usage is:
sparse_matrix_type X = speye(n_rows, n_cols)
sparse_matrix_type X = speye<sparse_matrix_type>(size(X))
Examples
[[cpp11::register]] doubles_matrix<> speye1_(const int& n) {
sp_mat A = speye<sp_mat>(n, n);
mat B = mat(A);
return as_doubles_matrix(B);
}
Generate sparse matrix with non-zero elements set to one
The spones(X)
function generates a sparse matrix with the same size as X
and all the non-zero elements set to 1
.
Examples
[[cpp11::register]] doubles_matrix<> spones1_(const int& n) {
sp_mat A = sprandu<sp_mat>(n, n, 0.1);
sp_mat B = spones(A);
mat C = mat(B);
return as_doubles_matrix(C);
}
Generate sparse matrix with non-zero elements set to random values from a uniform distribution
The sprandu()
function generates a sparse matrix of size n_rows x n_cols
with random floating point values uniformly distributed in the [0,1]
interval. The arguments can be n_rows, n_cols, density
or size(X), density
.
The usage is:
sparse_matrix_type X = sprandu<sparse_matrix_type>(n_rows, n_cols, density)
sparse_matrix_type X = sprandu<sparse_matrix_type>(size(X), density)
Examples
[[cpp11::register]] doubles_matrix<> sprandu1_(const int& n) {
sp_mat A = sprandu<sp_mat>(n, n, 0.05);
mat B = mat(A);
return as_doubles_matrix(B);
}
Generate sparse matrix with non-zero elements set to random values from a normal/gaussian distribution
The sprandn()
function generates a sparse matrix of size n_rows x n_cols
with random floating point values normally distributed with mean 0
and standard deviation 1
. The arguments can be n_rows, n_cols, density
or size(X), density
.
The usage is:
sparse_matrix_type X = sprandn<sparse_matrix_type>(n_rows, n_cols, density)
sparse_matrix_type X = sprandn<sparse_matrix_type>(size(X), density)
Examples
[[cpp11::register]] doubles_matrix<> sprandn1_(const int& n) {
sp_mat A = sprandn<sp_mat>(n, n, 0.05);
mat B = mat(A);
return as_doubles_matrix(B);
}
Generate Toeplitz matrix
The toeplitz()
function generates a toeplitz matrix. The arguments can be a
or a, b
, where a
is a vector that determines the first column and b
is an optional vector that determines the first row.
Alternatively, circ_toeplitz()
generates a circulant toeplitz matrix.
Examples
[[cpp11::register]] doubles_matrix<> toeplitz1_() {
vec a = linspace(1, 5, 5);
vec b = linspace(1, 5, 5);
mat A = toeplitz(a, b);
mat B = circ_toeplitz(a);
return as_doubles_matrix(A + B);
}