doi:10.48550/arXiv.2206.00710>, and for details on the discrete Gaussian and discrete Laplacian distributions see Canonne et al. (2020) <doi:10.48550/arXiv.2004.00010>.">

dapper: Data Augmentation for Private Posterior Estimation (original) (raw)

A data augmentation based sampler for conducting privacy-aware Bayesian inference. The dapper_sample() function takes an existing sampler as input and automatically constructs a privacy-aware sampler. The process of constructing a sampler is simplified through the specification of four independent modules, allowing for easy comparison between different privacy mechanisms by only swapping out the relevant modules. Probability mass functions for the discrete Gaussian and discrete Laplacian are provided to facilitate analyses dealing with privatized count data. The output of dapper_sample() can be analyzed using many of the same tools from the 'rstan' ecosystem. For methodological details on the sampler see Ju et al. (2022) <doi:10.48550/arXiv.2206.00710>, and for details on the discrete Gaussian and discrete Laplacian distributions see Canonne et al. (2020) <doi:10.48550/arXiv.2004.00010>.

Version: 1.0.1
Imports: bayesplot, checkmate, furrr, memoise, posterior, progressr, stats
Suggests: testthat (≥ 3.0.0)
Published: 2024-10-29
DOI: 10.32614/CRAN.package.dapper
Author: Kevin Eng [aut, cre, cph]
Maintainer: Kevin Eng
BugReports: https://github.com/mango-empire/dapper/issues
License: MIT + file
URL: https://github.com/mango-empire/dapper
NeedsCompilation: no
Materials: README NEWS
CRAN checks: dapper results

Documentation:

Downloads:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=dapperto link to this page.