doi:10.1023/A:1007692713085>), Mixture of Dirichlet-Multinomials estimated by Gradient Descent (Anderlucci, Viroli (2020) <doi:10.1007/s11634-020-00399-3>) and Deep Mixture of Multinomials whose estimates are obtained with Gibbs sampling scheme (Viroli, Anderlucci (2020) <doi:10.1007/s11222-020-09989-9>). There are also functions for graphical representation of clusters obtained.">

deepMOU: Clustering of Short Texts by Mixture of Unigrams and Its Deep Extensions (original) (raw)

Functions providing an easy and intuitive way for fitting and clusters data using the Mixture of Unigrams models by means the Expectation-Maximization algorithm (Nigam, K. et al. (2000). <doi:10.1023/A:1007692713085>), Mixture of Dirichlet-Multinomials estimated by Gradient Descent (Anderlucci, Viroli (2020) <doi:10.1007/s11634-020-00399-3>) and Deep Mixture of Multinomials whose estimates are obtained with Gibbs sampling scheme (Viroli, Anderlucci (2020) <doi:10.1007/s11222-020-09989-9>). There are also functions for graphical representation of clusters obtained.

Version: 0.1.1
Depends: R (≥ 3.5.0)
Imports: skmeans, extraDistr, dplyr, Rfast, entropy, ggplot2, graphics, MASS
Published: 2021-03-04
DOI: 10.32614/CRAN.package.deepMOU
Author: Martin D'Ippolito [aut, cre], Anderlucci Laura [aut], Cinzia Viroli [aut]
Maintainer: Martin D'Ippolito
License: GPL-3
NeedsCompilation: no
CRAN checks: deepMOU results

Documentation:

Downloads:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=deepMOUto link to this page.