flevr: Flexible, Ensemble-Based Variable Selection with Potentially Missing Data (original) (raw)
Perform variable selection in settings with possibly missing data based on extrinsic (algorithm-specific) and intrinsic (population-level) variable importance. Uses a Super Learner ensemble to estimate the underlying prediction functions that give rise to estimates of variable importance. For more information about the methods, please see Williamson and Huang (2023+) <doi:10.48550/arXiv.2202.12989>.
Version: | 0.0.4 |
---|---|
Depends: | R (≥ 3.1.0) |
Imports: | SuperLearner, dplyr, magrittr, tibble, caret, mvtnorm, kernlab, rlang, ranger |
Suggests: | vimp, stabs, testthat, knitr, rmarkdown, mice, xgboost, glmnet, polspline |
Published: | 2023-11-30 |
DOI: | 10.32614/CRAN.package.flevr |
Author: | Brian D. Williamson [aut, cre] |
Maintainer: | Brian D. Williamson <brian.d.williamson at kp.org> |
BugReports: | https://github.com/bdwilliamson/flevr/issues |
License: | MIT + file |
URL: | https://github.com/bdwilliamson/flevr |
NeedsCompilation: | no |
Materials: | README NEWS |
CRAN checks: | flevr results |
Documentation:
Downloads:
Linking:
Please use the canonical formhttps://CRAN.R-project.org/package=flevrto link to this page.