doi:10.1093/bioinformatics/btab039> and Bhattacharjee et al (2021) <doi:10.48550/arXiv.2012.02102>.">

highMLR: Feature Selection for High Dimensional Survival Data (original) (raw)

Perform high dimensional Feature Selection in the presence of survival outcome. Based on Feature Selection method and different survival analysis, it will obtain the best markers with optimal threshold levels according to their effect on disease progression and produce the most consistent level according to those threshold values. The functions' methodology is based on by Sonabend et al (2021) <doi:10.1093/bioinformatics/btab039> and Bhattacharjee et al (2021) <doi:10.48550/arXiv.2012.02102>.

Version: 0.1.1
Depends: R (≥ 3.5.0)
Imports: mlr3, mlr3learners, survival, gtools, tibble, dplyr, utils, coxme, missForest, R6
Published: 2022-07-18
DOI: 10.32614/CRAN.package.highMLR
Author: Atanu Bhattacharjee [aut, cre, ctb], Gajendra K. Vishwakarma [aut, ctb], Souvik Banerjee [aut, ctb]
Maintainer: Atanu Bhattacharjee
License: GPL-3
NeedsCompilation: no
CRAN checks: highMLR results

Documentation:

Downloads:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=highMLRto link to this page.