higrad: Statistical Inference for Online Learning and Stochastic Approximation via HiGrad (original) (raw)
Implements the Hierarchical Incremental GRAdient Descent (HiGrad) algorithm, a first-order algorithm for finding the minimizer of a function in online learning just like stochastic gradient descent (SGD). In addition, this method attaches a confidence interval to assess the uncertainty of its predictions. See Su and Zhu (2018) <doi:10.48550/arXiv.1802.04876> for details.
Version: | 0.1.0 |
---|---|
Imports: | Matrix |
Published: | 2018-03-14 |
DOI: | 10.32614/CRAN.package.higrad |
Author: | Weijie Su [aut], Yuancheng Zhu [aut, cre] |
Maintainer: | Yuancheng Zhu <yuancheng.zhu at gmail.com> |
License: | GPL-3 |
NeedsCompilation: | no |
Materials: | README, NEWS |
CRAN checks: | higrad results |
Documentation:
Downloads:
Linking:
Please use the canonical formhttps://CRAN.R-project.org/package=higradto link to this page.