kdensity: Kernel Density Estimation with Parametric Starts and Asymmetric Kernels (original) (raw)
Handles univariate non-parametric density estimation with parametric starts and asymmetric kernels in a simple and flexible way. Kernel density estimation with parametric starts involves fitting a parametric density to the data before making a correction with kernel density estimation, see Hjort & Glad (1995) <doi:10.1214/aos/1176324627>. Asymmetric kernels make kernel density estimation more efficient on bounded intervals such as (0, 1) and the positive half-line. Supported asymmetric kernels are the gamma kernel of Chen (2000) <doi:10.1023/A:1004165218295>, the beta kernel of Chen (1999) <doi:10.1016/S0167-9473(99)00010-9>, and the copula kernel of Jones & Henderson (2007) <doi:10.1093/biomet/asm068>. User-supplied kernels, parametric starts, and bandwidths are supported.
Version: | 1.1.0 |
---|---|
Imports: | assertthat, univariateML, EQL |
Suggests: | extraDistr, SkewHyperbolic, testthat, covr, knitr, rmarkdown |
Published: | 2020-09-30 |
DOI: | 10.32614/CRAN.package.kdensity |
Author: | Jonas Moss, Martin Tveten |
Maintainer: | Jonas Moss <jonas.gjertsen at gmail.com> |
BugReports: | https://github.com/JonasMoss/kdensity/issues |
License: | MIT + file |
URL: | https://github.com/JonasMoss/kdensity |
NeedsCompilation: | no |
Materials: | README NEWS |
CRAN checks: | kdensity results |
Documentation:
Downloads:
Reverse dependencies:
Linking:
Please use the canonical formhttps://CRAN.R-project.org/package=kdensityto link to this page.