doi:10.1214/aos/1176324627>. Asymmetric kernels make kernel density estimation more efficient on bounded intervals such as (0, 1) and the positive half-line. Supported asymmetric kernels are the gamma kernel of Chen (2000) <doi:10.1023/A:1004165218295>, the beta kernel of Chen (1999) <doi:10.1016/S0167-9473(99)00010-9>, and the copula kernel of Jones & Henderson (2007) <doi:10.1093/biomet/asm068>. User-supplied kernels, parametric starts, and bandwidths are supported.">

kdensity: Kernel Density Estimation with Parametric Starts and Asymmetric Kernels (original) (raw)

Handles univariate non-parametric density estimation with parametric starts and asymmetric kernels in a simple and flexible way. Kernel density estimation with parametric starts involves fitting a parametric density to the data before making a correction with kernel density estimation, see Hjort & Glad (1995) <doi:10.1214/aos/1176324627>. Asymmetric kernels make kernel density estimation more efficient on bounded intervals such as (0, 1) and the positive half-line. Supported asymmetric kernels are the gamma kernel of Chen (2000) <doi:10.1023/A:1004165218295>, the beta kernel of Chen (1999) <doi:10.1016/S0167-9473(99)00010-9>, and the copula kernel of Jones & Henderson (2007) <doi:10.1093/biomet/asm068>. User-supplied kernels, parametric starts, and bandwidths are supported.

Version: 1.1.0
Imports: assertthat, univariateML, EQL
Suggests: extraDistr, SkewHyperbolic, testthat, covr, knitr, rmarkdown
Published: 2020-09-30
DOI: 10.32614/CRAN.package.kdensity
Author: Jonas Moss, Martin Tveten
Maintainer: Jonas Moss <jonas.gjertsen at gmail.com>
BugReports: https://github.com/JonasMoss/kdensity/issues
License: MIT + file
URL: https://github.com/JonasMoss/kdensity
NeedsCompilation: no
Materials: README NEWS
CRAN checks: kdensity results

Documentation:

Downloads:

Reverse dependencies:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=kdensityto link to this page.