doi:10.1080/01621459.1988.10478722> for the statistical rationale for the methods used.">

missr: Classify Missing Data as MCAR, MAR, or MNAR (original) (raw)

Classify missing data as missing completely at random (MCAR), missing at random (MAR), or missing not at random (MNAR). This step is required before handling missing data (e.g. mean imputation) so that bias is not introduced. See Little (1988) <doi:10.1080/01621459.1988.10478722> for the statistical rationale for the methods used.

Version: 1.0.1
Depends: R (≥ 3.5)
Imports: norm, tibble, lifecycle
Suggests: knitr, rmarkdown, testthat (≥ 3.0.0)
Published: 2025-06-04
DOI: 10.32614/CRAN.package.missr
Author: Noah William Trelawny Hellen [aut, cre, cph]
Maintainer: Noah William Trelawny Hellen
BugReports: https://github.com/NoahHellen/missr/issues
License: MIT + file
URL: https://github.com/NoahHellen/missr,https://noahhellen.github.io/missr/
NeedsCompilation: no
Language: en-GB
Materials: README, NEWS
CRAN checks: missr results

Documentation:

Downloads:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=missrto link to this page.