doi:10.18637/jss.v095.i11> and the underlying methods in Train (2009) <doi:10.1017/CBO9780511805271>.">

mlogit: Multinomial Logit Models (original) (raw)

Maximum likelihood estimation of random utility discrete choice models. The software is described in Croissant (2020) <doi:10.18637/jss.v095.i11> and the underlying methods in Train (2009) <doi:10.1017/CBO9780511805271>.

Version: 1.1-2
Depends: R (≥ 2.10), dfidx
Imports: Formula, zoo, lmtest, statmod, MASS, Rdpack
Suggests: knitr, car, nnet, lattice, AER, ggplot2, texreg, rmarkdown
Published: 2025-04-28
DOI: 10.32614/CRAN.package.mlogit
Author: Yves Croissant [aut, cre]
Maintainer: Yves Croissant <yves.croissant at univ-reunion.fr>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
URL: https://cran.r-project.org/package=mlogit
NeedsCompilation: no
Citation: mlogit citation info
Materials: NEWS
In views: Econometrics
CRAN checks: mlogit results

Documentation:

Reference manual: mlogit.pdf
Vignettes: 2. Data management, model description and testing (source, R code) 3. Random utility model and the multinomial logit model (source, R code) 4. Logit models relaxing the iid hypothesis (source, R code) 5. The random parameters (or mixed) logit model (source, R code) 6. The multinomial probit model (source, R code) 7. Miscellaneous models (source, R code) Exercise 1: Multinomial logit model (source, R code) Exercise 2: Nested logit model (source, R code) Exercise 3: Mixed logit model (source, R code) Exercise 4: Multinomial probit (source, R code) mlogit (source, R code)

Downloads:

Reverse dependencies:

Reverse depends: nopp, Ravages
Reverse imports: clusterSEs, DCEmgmt, DCEtool, ExactMed, glm.predict, gmnl, misclassGLM, pleLMA, riskclustr
Reverse suggests: AER, broom, catdata, generalhoslem, ggeffects, gofcat, insight, lmw, logitr, marginaleffects, micsr, mixl, mlogitBMA, nonnest2, performance, RprobitB, support.BWS, urbin, WeightIt
Reverse enhances: prediction, stargazer, texreg

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=mlogitto link to this page.