doi:10.48550/arXiv.1911.04927>.">

mmpca: Integrative Analysis of Several Related Data Matrices (original) (raw)

A generalization of principal component analysis for integrative analysis. The method finds principal components that describe single matrices or that are common to several matrices. The solutions are sparse. Rank of solutions is automatically selected using cross validation. The method is described in Kallus et al. (2019) <doi:10.48550/arXiv.1911.04927>.

Version: 2.0.3
Depends: R (≥ 3.3.0)
Imports: digest (≥ 0.6.0), Rcpp (≥ 1.0.8)
LinkingTo: Rcpp, RcppEigen, RcppGSL
Published: 2022-11-15
DOI: 10.32614/CRAN.package.mmpca
Author: Jonatan Kallus [aut], Felix Held [ctb, cre]
Maintainer: Felix Held <felix.held at gmail.com>
BugReports: https://github.com/cyianor/mmpca/issues
License: GPL (≥ 3)
URL: https://github.com/cyianor/mmpca
NeedsCompilation: yes
SystemRequirements: C++14
Materials: README NEWS
CRAN checks: mmpca results

Documentation:

Reference manual: mmpca.pdf

Downloads:

Package source: mmpca_2.0.3.tar.gz
Windows binaries: r-devel: mmpca_2.0.3.zip, r-release: mmpca_2.0.3.zip, r-oldrel: mmpca_2.0.3.zip
macOS binaries: r-release (arm64): mmpca_2.0.3.tgz, r-oldrel (arm64): mmpca_2.0.3.tgz, r-release (x86_64): mmpca_2.0.3.tgz, r-oldrel (x86_64): mmpca_2.0.3.tgz
Old sources: mmpca archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=mmpcato link to this page.