neuralnet: Training of Neural Networks (original) (raw)

Training of neural networks using backpropagation, resilient backpropagation with (Riedmiller, 1994) or without weight backtracking (Riedmiller and Braun, 1993) or the modified globally convergent version by Anastasiadis et al. (2005). The package allows flexible settings through custom-choice of error and activation function. Furthermore, the calculation of generalized weights (Intrator O & Intrator N, 1993) is implemented.

Version: 1.44.2
Depends: R (≥ 2.9.0)
Imports: grid, MASS, grDevices, stats, utils, Deriv
Suggests: testthat
Published: 2019-02-07
DOI: 10.32614/CRAN.package.neuralnet
Author: Stefan Fritsch [aut], Frauke Guenther [aut], Marvin N. Wright [aut, cre], Marc Suling [ctb], Sebastian M. Mueller [ctb]
Maintainer: Marvin N. Wright
BugReports: https://github.com/bips-hb/neuralnet/issues
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
URL: https://github.com/bips-hb/neuralnet
NeedsCompilation: no
Materials:
CRAN checks: neuralnet results

Documentation:

Downloads:

Reverse dependencies:

Reverse depends: MARSANNhybrid, quarrint
Reverse imports: AriGaMyANNSVR, CEEMDANML, ConvertPar, DeepLearningCausal, EventDetectR, FRI, FWRGB, Imneuron, ImNN, LilRhino, Modeler, nnfor, reddPrec, RSDA, SignacX, trackdem, traineR, WaveletML
Reverse suggests: flowml, gemR, innsight, mcboost, misspi, mlr, NeuralNetTools, NeuralSens, plotmo, qeML, TrafficBDE
Reverse enhances: vip

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=neuralnetto link to this page.