pivmet: Pivotal Methods for Bayesian Relabelling and k-Means Clustering (original) (raw)

Collection of pivotal algorithms for: relabelling the MCMC chains in order to undo the label switching problem in Bayesian mixture models; fitting sparse finite mixtures; initializing the centers of the classical k-means algorithm in order to obtain a better clustering solution. For further details see Egidi, Pappadà, Pauli and Torelli (2018b)ISBN:9788891910233.

Version: 0.6.0
Depends: R (≥ 3.1.0)
Imports: cluster, mclust, MASS, corpcor, runjags, rstan, bayesmix, rjags, mvtnorm, bayesplot, scales
Suggests: knitr, rmarkdown, testthat
Published: 2024-05-30
DOI: 10.32614/CRAN.package.pivmet
Author: Leonardo Egidi[aut, cre], Roberta Pappadà[aut], Francesco Pauli[aut], Nicola Torelli[aut]
Maintainer: Leonardo Egidi
License: GPL-2
URL: https://github.com/leoegidi/pivmet
NeedsCompilation: no
SystemRequirements: pandoc (>= 1.12.3), pandoc-citeproc
Materials: README NEWS
CRAN checks: pivmet results

Documentation:

Downloads:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=pivmetto link to this page.