pivmet: Pivotal Methods for Bayesian Relabelling and k-Means Clustering (original) (raw)
Collection of pivotal algorithms for: relabelling the MCMC chains in order to undo the label switching problem in Bayesian mixture models; fitting sparse finite mixtures; initializing the centers of the classical k-means algorithm in order to obtain a better clustering solution. For further details see Egidi, Pappadà, Pauli and Torelli (2018b)ISBN:9788891910233.
Version: | 0.6.0 |
---|---|
Depends: | R (≥ 3.1.0) |
Imports: | cluster, mclust, MASS, corpcor, runjags, rstan, bayesmix, rjags, mvtnorm, bayesplot, scales |
Suggests: | knitr, rmarkdown, testthat |
Published: | 2024-05-30 |
DOI: | 10.32614/CRAN.package.pivmet |
Author: | Leonardo Egidi[aut, cre], Roberta Pappadà[aut], Francesco Pauli[aut], Nicola Torelli[aut] |
Maintainer: | Leonardo Egidi |
License: | GPL-2 |
URL: | https://github.com/leoegidi/pivmet |
NeedsCompilation: | no |
SystemRequirements: | pandoc (>= 1.12.3), pandoc-citeproc |
Materials: | README NEWS |
CRAN checks: | pivmet results |
Documentation:
Downloads:
Linking:
Please use the canonical formhttps://CRAN.R-project.org/package=pivmetto link to this page.