doi:10.1080/10618600.2019.1598871>.">

ppgmmga: Projection Pursuit Based on Gaussian Mixtures and Evolutionary Algorithms (original) (raw)

Projection Pursuit (PP) algorithm for dimension reduction based on Gaussian Mixture Models (GMMs) for density estimation using Genetic Algorithms (GAs) to maximise an approximated negentropy index. For more details see Scrucca and Serafini (2019) <doi:10.1080/10618600.2019.1598871>.

Version: 1.3
Depends: R (≥ 3.4)
Imports: Rcpp (≥ 1.0.0), mclust (≥ 5.4), GA (≥ 3.1), ggplot2 (≥ 2.2.1), cli, crayon, utils, stats
LinkingTo: Rcpp, RcppArmadillo (≥ 0.7)
Suggests: knitr (≥ 1.8), rmarkdown (≥ 2.0)
Published: 2023-11-17
DOI: 10.32614/CRAN.package.ppgmmga
Author: Alessio Serafini ORCID iD [aut], Luca Scrucca ORCID iD [aut, cre]
Maintainer: Luca Scrucca <luca.scrucca at unipg.it>
BugReports: https://github.com/luca-scr/ppgmmga/issues
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
URL: https://github.com/luca-scr/ppgmmga
NeedsCompilation: yes
Citation: ppgmmga citation info
Materials: README NEWS
CRAN checks: ppgmmga results

Documentation:

Downloads:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=ppgmmgato link to this page.