doi:10.1002/sim.9387>.">

pprof: Modeling, Standardization and Testing for Provider Profiling (original) (raw)

Implements linear and generalized linear models for provider profiling, incorporating both fixed and random effects. For large-scale providers, the linear profiled-based method and the SerBIN method for binary data reduce the computational burden. Provides post-modeling features, such as indirect and direct standardization measures, hypothesis testing, confidence intervals, and post-estimation visualization. For more information, see Wu et al. (2022) <doi:10.1002/sim.9387>.

Version: 1.0.1
Depends: R (≥ 4.1.0)
Imports: Rcpp, RcppParallel, stats, caret, olsrr, pROC, poibin, dplyr, ggplot2, Matrix, lme4, magrittr, scales, tibble, rlang
LinkingTo: Rcpp, RcppArmadillo, RcppParallel
Suggests: knitr, rmarkdown, testthat (≥ 3.0.0)
Published: 2024-12-12
DOI: 10.32614/CRAN.package.pprof
Author: Xiaohan Liu [aut, cre], Lingfeng Luo [aut], Yubo Shao [aut], Xiangeng Fang [aut], Wenbo Wu [aut], Kevin He [aut]
Maintainer: Xiaohan Liu
License: MIT + file
URL: https://github.com/UM-KevinHe/pprof
NeedsCompilation: yes
SystemRequirements: GNU make
Materials: README
CRAN checks: pprof results

Documentation:

Downloads:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=pprofto link to this page.