quadVAR: Quadratic Vector Autoregression (original) (raw)
Estimate quadratic vector autoregression models with the strong hierarchy using the Regularization Algorithm under Marginality Principle (RAMP) by Hao et al. (2018) <doi:10.1080/01621459.2016.1264956>, compare the performance with linear models, and construct networks with partial derivatives.
Version: | 0.1.2 |
---|---|
Imports: | cli, dplyr, ggplot2, magrittr, ncvreg, qgraph, RAMP, rlang, shiny, shinythemes, stats, stringr, tibble, tidyr |
Suggests: | nonlinearTseries, remotes, SIS, testthat (≥ 3.0.0) |
Published: | 2025-02-11 |
DOI: | 10.32614/CRAN.package.quadVAR |
Author: | Jingmeng Cui |
Maintainer: | Jingmeng Cui <jingmeng.cui at outlook.com> |
BugReports: | https://github.com/Sciurus365/quadVAR/issues |
License: | GPL (≥ 3) |
URL: | https://github.com/Sciurus365/quadVAR,https://sciurus365.github.io/quadVAR/ |
NeedsCompilation: | no |
Materials: | README, NEWS |
In views: | TimeSeries |
CRAN checks: | quadVAR results |
Documentation:
Downloads:
Linking:
Please use the canonical formhttps://CRAN.R-project.org/package=quadVARto link to this page.