doi:10.48550/arXiv.1712.03448> and Cattaneo, Cheung, Ma, and Masatlioglu (2022) <doi:10.48550/arXiv.2110.10650>, which utilizes standard choice data to partially identify and estimate a decision maker's preference and attention. For inference, several simulation-based critical values are provided.">

ramchoice: Revealed Preference and Attention Analysis in Random Limited Attention Models (original) (raw)

It is widely documented in psychology, economics and other disciplines that socio-economic agent may not pay full attention to all available alternatives, rendering standard revealed preference theory invalid. This package implements the estimation and inference procedures of Cattaneo, Ma, Masatlioglu and Suleymanov (2020) <doi:10.48550/arXiv.1712.03448> and Cattaneo, Cheung, Ma, and Masatlioglu (2022) <doi:10.48550/arXiv.2110.10650>, which utilizes standard choice data to partially identify and estimate a decision maker's preference and attention. For inference, several simulation-based critical values are provided.

Version: 2.2
Depends: R (≥ 3.1.0)
Imports: MASS
Published: 2024-01-22
DOI: 10.32614/CRAN.package.ramchoice
Author: Matias D. Cattaneo, Paul Cheung, Xinwei Ma, Yusufcan Masatlioglu, Elchin Suleymanov
Maintainer: Xinwei Ma
License: GPL-2
NeedsCompilation: no
CRAN checks: ramchoice results

Documentation:

Downloads:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=ramchoiceto link to this page.