doi:10.5194/acp-18-6223-2018> and Grange and Carslaw (2019) <doi:10.1016/j.scitotenv.2018.10.344>. The random forest models can also be used for counterfactual or business as usual (BAU) modelling by using the models to predict, from the model's perspective, the future. For an example, see Grange et al. (2021) <doi:10.5194/acp-2020-1171>.">

rmweather: Tools to Conduct Meteorological Normalisation and Counterfactual Modelling for Air Quality Data (original) (raw)

An integrated set of tools to allow data users to conduct meteorological normalisation and counterfactual modelling for air quality data. The meteorological normalisation technique uses predictive random forest models to remove variation of pollutant concentrations so trends and interventions can be explored in a robust way. For examples, see Grange et al. (2018) <doi:10.5194/acp-18-6223-2018> and Grange and Carslaw (2019) <doi:10.1016/j.scitotenv.2018.10.344>. The random forest models can also be used for counterfactual or business as usual (BAU) modelling by using the models to predict, from the model's perspective, the future. For an example, see Grange et al. (2021) <doi:10.5194/acp-2020-1171>.

Version: 0.2.6
Depends: R (≥ 3.2.0)
Imports: dplyr (≥ 1.0.1), ggplot2, lubridate, magrittr, pdp, purrr (≥ 1.0.0), ranger, stringr, strucchange, tibble, viridis, tidyr, cli
Suggests: testthat, openair
Published: 2024-06-04
DOI: 10.32614/CRAN.package.rmweather
Author: Stuart K. Grange ORCID iD [cre, aut]
Maintainer: Stuart K. Grange <stuart.grange at york.ac.uk>
BugReports: https://github.com/skgrange/rmweather/issues
License: GPL-3 | file
URL: https://github.com/skgrange/rmweather
NeedsCompilation: no
Citation: rmweather citation info
CRAN checks: rmweather results

Documentation:

Downloads:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=rmweatherto link to this page.