scAnnotate: An Automated Cell Type Annotation Tool for Single-Cell RNA-Sequencing Data (original) (raw)
An entirely data-driven cell type annotation tools, which requires training data to learn the classifier, but not biological knowledge to make subjective decisions. It consists of three steps: preprocessing training and test data, model fitting on training data, and cell classification on test data. See Xiangling Ji,Danielle Tsao, Kailun Bai, Min Tsao, Li Xing, Xuekui Zhang.(2022)<doi:10.1101/2022.02.19.481159> for more details.
Version: | 0.3 |
---|---|
Depends: | R (≥ 4.0.0) |
Imports: | glmnet, stats, Seurat (≥ 5.0.1), harmony, SeuratObject |
Suggests: | knitr, testthat (≥ 3.0.0), rmarkdown |
Published: | 2024-03-14 |
DOI: | 10.32614/CRAN.package.scAnnotate |
Author: | Xiangling Ji [aut], Danielle Tsao [aut], Kailun Bai [ctb], Min Tsao [aut], Li Xing [aut], Xuekui Zhang [aut, cre] |
Maintainer: | Xuekui Zhang |
License: | GPL-3 |
URL: | https://doi.org/10.1101/2022.02.19.481159 |
NeedsCompilation: | no |
Materials: | NEWS |
CRAN checks: | scAnnotate results |
Documentation:
Downloads:
Linking:
Please use the canonical formhttps://CRAN.R-project.org/package=scAnnotateto link to this page.