doi:10.1111/1467-9868.00288> and Furrer and Sain (2010) <doi:10.18637/jss.v036.i10>), while binary predictors are generated using a Boolean model (see Cressie and Wikle (2011, ISBN: 978-0-471-69274-4)). Parameter vectors exhibiting spatial clustering can also be easily specified by the user.">

sim2Dpredictr: Simulate Outcomes Using Spatially Dependent Design Matrices (original) (raw)

Provides tools for simulating spatially dependent predictors (continuous or binary), which are used to generate scalar outcomes in a (generalized) linear model framework. Continuous predictors are generated using traditional multivariate normal distributions or Gauss Markov random fields with several correlation function approaches (e.g., see Rue (2001) <doi:10.1111/1467-9868.00288> and Furrer and Sain (2010) <doi:10.18637/jss.v036.i10>), while binary predictors are generated using a Boolean model (see Cressie and Wikle (2011, ISBN: 978-0-471-69274-4)). Parameter vectors exhibiting spatial clustering can also be easily specified by the user.

Version: 0.1.1
Depends: R (≥ 3.5.0)
Imports: MASS, Rdpack, spam (≥ 2.2-0), tibble, dplyr, matrixcalc
Suggests: knitr, rmarkdown, testthat, V8
Published: 2023-04-03
DOI: 10.32614/CRAN.package.sim2Dpredictr
Author: Justin Leach [aut, cre, cph]
Maintainer: Justin Leach
BugReports: https://github.com/jmleach-bst/sim2Dpredictr
License: GPL-3
URL: https://github.com/jmleach-bst/sim2Dpredictr
NeedsCompilation: no
Materials: README NEWS
CRAN checks: sim2Dpredictr results

Documentation:

Downloads:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=sim2Dpredictrto link to this page.