simcausal: Simulating Longitudinal Data with Causal Inference Applications (original) (raw)
A flexible tool for simulating complex longitudinal data using structural equations, with emphasis on problems in causal inference. Specify interventions and simulate from intervened data generating distributions. Define and evaluate treatment-specific means, the average treatment effects and coefficients from working marginal structural models. User interface designed to facilitate the conduct of transparent and reproducible simulation studies, and allows concise expression of complex functional dependencies for a large number of time-varying nodes. See the package vignette for more information, documentation and examples.
Version: | 0.5.7 |
---|---|
Depends: | R (≥ 3.2.0) |
Imports: | data.table, igraph, stringr, R6, assertthat, Matrix, methods |
Suggests: | copula, RUnit, ltmle, knitr, ggplot2, Hmisc, mvtnorm, bindata |
Published: | 2024-10-19 |
DOI: | 10.32614/CRAN.package.simcausal |
Author: | Oleg Sofrygin [aut], Mark J. van der Laan [aut], Romain Neugebauer [aut], Fred Gruber [ctb, cre] |
Maintainer: | Fred Gruber |
BugReports: | https://github.com/osofr/simcausal/issues |
License: | GPL-2 |
URL: | https://github.com/osofr/simcausal |
NeedsCompilation: | no |
Citation: | simcausal citation info |
Materials: | README |
CRAN checks: | simcausal results |
Documentation:
Downloads:
Linking:
Please use the canonical formhttps://CRAN.R-project.org/package=simcausalto link to this page.