Help for package spearmanCI (original) (raw)

Version: 1.1
Date: 2024-06-02
Title: Jackknife Euclidean / Empirical Likelihood Inference for Spearman's Rho
Description: Functions for conducting jackknife Euclidean / empirical likelihood inference for Spearman's rho (de Carvalho and Marques (2012) <doi:10.1080/10920277.2012.10597644>).
Author: Miguel de Carvalho [aut, cre]
Depends: R (≥ 3.0.1)
Maintainer: Miguel de Carvalho miguel.decarvalho@ed.ac.uk
License: GPL (≥ 3)
Repository: CRAN
Imports: emplik, MASS
NeedsCompilation: no
Packaged: 2024-06-02 15:07:41 UTC; muad'dib
Date/Publication: 2024-06-02 15:20:02 UTC

Danish Fire Insurance Claims Database

Description

Danish Fire Insurance Claims Database includes 2167 industrial fire losses gathered from the Copenhagen Reinsurance Company over the period 1980–1990.

Usage

data(fire)

Format

A dataframe with 2167 observations on five variables. The object is of class data.frame.

Examples

data(fire)
attach(fire)
plot(building, contents, pch = 20, xlim = c(0,95), ylim = c(0,133),
     xlab = "Loss of Building", ylab = "Loss of Contents",
     main = "Danish Fire Insurance Claims") 

Jackknife Euclidean / Empirical Likelihood Inference for Spearman's Correlation

Description

Computes jackknife Euclidean / empirical likelihood confidence intervals for Spearman's correlation.

Usage

spearmanCI(x, y, level = 0.95, method = "Euclidean", plot = FALSE)

Arguments

x vector with data.
y vector with data.
level the confidence level required.
method this must be one of the strings "Euclidean" or"empirical"; see references below for details.
plot logical; if TRUE, it plots log-likelihood ratio function.

Author(s)

Miguel de Carvalho

References

de Carvalho, M. and Marques, F. J. (2012). Jackknife Euclidean likelihood-based inference for Spearman's rho. North American Actuarial Journal, 16, 487–492.

Wang, R., and Peng, L. (2011). Jackknife empirical likelihood intervals for Spearman’s rho. North American Actuarial Journal,15, 475–486.

Examples

## Real data example
data(fire)
attach(fire)
spearmanCI(building, contents)

## The intervals in de Carvalho and Marques (2012, Section 3.2)
## differ slightly as they are based on the estimate 
## spearman <- function(x, y) {
##  n <- length(x)
##  F <- ecdf(x); G <- ecdf(y)
##  return(12 / n * sum((F(x) - 1 / 2) * (G(y) - 1 / 2)))  
## }

## Simulated data example
library(MASS)
pearson <- .7
Sigma <- matrix(c(1, pearson, pearson, 1), 2, 2)
xy <- mvrnorm(n = 1000, rep(0, 2), Sigma)
spearmanCI(xy[, 1], xy[, 2])
abline(v = 6 / pi * asin(pearson / 2), col = "grey", lty = 3)