doi:10.48550/arXiv.2212.09703>. Persistent homology can be computed using 'TDA' and 'ripserr' and vectorized using 'TDAvec'. The Tidymodels package collection modularizes machine learning in R for straightforward extensibility; see Kuhn & Silge (2022, ISBN:978-1-4920-9644-3). These 'recipe' steps and 'dials' tuners make efficient algorithms for computing and vectorizing persistence diagrams available for Tidymodels workflows.">

tdarec: A 'recipes' Extension for Persistent Homology and Its Vectorizations (original) (raw)

Topological data analytic methods in machine learning rely on vectorizations of the persistence diagrams that encode persistent homology, as surveyed by Ali &al (2000) <doi:10.48550/arXiv.2212.09703>. Persistent homology can be computed using 'TDA' and 'ripserr' and vectorized using 'TDAvec'. The Tidymodels package collection modularizes machine learning in R for straightforward extensibility; see Kuhn & Silge (2022, ISBN:978-1-4920-9644-3). These 'recipe' steps and 'dials' tuners make efficient algorithms for computing and vectorizing persistence diagrams available for Tidymodels workflows.

Version: 0.2.0
Depends: R (≥ 3.5.0), recipes (≥ 0.1.17), dials
Imports: rlang (≥ 1.1.0), vctrs (≥ 0.5.0), scales, tibble, purrr (≥ 1.0.0), tidyr, magrittr
Suggests: ripserr (≥ 0.1.1), TDA, TDAvec (≥ 0.1.4), testthat (≥ 3.0.0), modeldata, tdaunif, knitr (≥ 1.20), rmarkdown (≥ 1.10), tidymodels, ranger
Published: 2025-06-20
DOI: 10.32614/CRAN.package.tdarec
Author: Jason Cory Brunson [cre, aut]
Maintainer: Jason Cory Brunson
BugReports: https://github.com/tdaverse/tdarec/issues
License: GPL (≥ 3)
URL: https://github.com/tdaverse/tdarec
NeedsCompilation: no
Materials: README, NEWS
CRAN checks: tdarec results

Documentation:

Downloads:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=tdarecto link to this page.